Контрольная работа: по Геологии 3

Название: по Геологии 3
Раздел: Рефераты по геологии
Тип: контрольная работа

Вариант 2

1. Проведите классификацию видов воды в грунтах

Горные породы содержат различные виды воды. Ее состояние и свойства в рыхлых песчаных и глинистых породах впервые были экспериментально изучены советским ученым А. Ф. Лебедевым, выделившим несколько видов воды в горных породах, отличающихся физическими свойствами. Позднее идеи А. Ф. Лебедева получили дальнейшее развитие в работах В. А. Приклонского, А. А. Роде, А. М. Васильева, В. Д. Ломтадзе, Е. М. Сергеева и др. В настоящее время предложено следующее подразделение видов воды в породах:

I. Вода в форме пара.

II. Физически связанная вода: 1) прочносвязанная (гигроскопическая) вода; 2) слабосвязанная (пленочная) вода.

III. Свободная вода: 1) капиллярная вода; 2) гравитационная вода.

IV. Вода в твердом состоянии.

V. Кристаллизационная вода и химически связанная вода.

Рисунок 1 - Схема грунтовых вод и верховодки: I- зона аэрации; II- зона насыщения;

1- почвенные и капиллярно-подвешенные воды, 2- песчаные водопроницаемые породы, 3- водонепроницаемые породы, 4- грунтовые воды, 5- уровень грунтовых вод, 6- направление движения грунтовых вод, 7- капиллярно-поднятая вода, 8- нисходящий источник, 9- уровень верховодки, 10- направление инфильтрующихся вод (Короновский, Якушова, 1991)

Вода в форме пара содержится в воздухе, заполняющем пустоты и трещины горных пород, свободные от жидкой воды. Парообразная вода находится в динамическом равновесии с другими видами воды и с парами атмосферы. Прочносвязанная вода образуется непосредственно на поверхности частиц горных пород в результате процессов адсорбции молекул воды из паров и прочно удерживается под влиянием электрокинетических и межмолекулярных сил. Вследствие этого она и получила название прочносвязанной или гигроскопической. Содержание прочносвязанной воды зависит от состава, структуры и степени дисперсности минеральных частиц. Особенно много физически связанной воды содержится в тонкодисперсных глинистых породах. Слабосвязанная вода имеет меньший уровень энергетической связи. Она образует на поверхности частиц как бы вторую пленку поверх прочносвязанной и может передвигаться от участков с большей толщиной пленки к участкам, где толщина меньше. Пленка удерживается молекулярными силами, возникающими между молекулами прочносвязанной воды и молекулами воды вновь образующейся пленки. По мере роста толщины пленки действие молекулярных связей уменьшается. Внешние слои слабосвязанной воды доступны для питания растений и могут служить средой развития микроорганизмов. Суммарное содержание прочно- и слабосвязанной воды образует максимальную молекулярную влагоемкость, которая изменяется в зависимости от состава пород (в %): для песков 5-7; супесей - 9-19; суглинков- 15-23; глин - 25-40.

Капиллярная вода частично или полностью заполняет тонкие капиллярные поры и трещинки горных пород и удерживается в них силами поверхностного натяжения (капиллярных менисков). Она подразделяется на капиллярно-разобщенную, капиллярно-подвешенную и капиллярно-поднятую. Капиллярно-разобщенная вода называется также водой углов пор или стыковой водой. Она обычно образуется преимущественно в местах сопряжения частиц породы и суженных угловых участков пор, где прочно удерживается капиллярными силами (капиллярно-неподвижное состояние). Другие виды капиллярной воды способны передвигаться и передавать гидростатическое давление. Капиллярно-подвешенная вода образуется в верхней части зоны аэрации, в тонких порах и трещинках почв и песчано-глинистых пород за счет инфильтрации атмосферных осадков при влажности пород выше максимальной молекулярной влагоемкоемкости. Капиллярно-подвешенная вода не доходит до уровня подземных вод. Она доступна для растений, но в засушливые годы при длительном испарении может расходоваться почти до полного исчезновения. Капиллярно-поднятая вода располагается над уровнем первого от поверхности водоносного горизонта (грунтовых вод), где она образует так называемую капиллярную кайму. Мощность ее различна и зависит от состава горных пород; она минимальна в крупнообломочных породах (до 2-30-35 см), максимальна в суглинках и глинах (до первых метров). Количество воды в породе, соответствующее полному насыщению всех капиллярных пор, называют капиллярной влагоемкостью.

Гравитационная (свободная) вода образуется в породах при полном насыщении всех пор и трещин водой, что соответствует полной влагоемкости. В этих условиях вода движется под воздействием силы тяжести и напорного градиента в направлении к рекам, морям и другим областям разгрузки. К гравитационной воде относят также инфильтрационную воду зоны аэрации, появляющуюся периодически во время снеготаяния, после выпадения дождей и идущую на пополнение подземных вод.

Вода в твердом состоянии находится в горных породах или в виде отдельных кристаллов, или в виде линз и прослоев чистого льда. Она образуется при сезонном промерзании водонасыщенных горных пород, но особенно широко развита в областях распространения многолетнемерзлых горных пород (в Сибири, Канаде и других районах).

Кристаллизационная вода свойственна ряду минералов, где она входит в их кристаллическую решетку. Из таких минералов можно назвать мирабилит Na2SO4.10H2O с содержанием кристаллизационной воды до 55,9%, бишофит MgCl2.6Н2О - до 53,2%, гипс CaSO4.2Н2O- до 20,9% и др. Кристаллизационная вода в ряде случаев может быть выделена при высоких температурах. При этом в процессе нагревания могут образовываться промежуточные соединения с меньшим содержанием воды, что видно из рассмотрения превращения гипса в ангидрит (Короновский, Якушова, 1991).

2. Опишите происхождение метаморфических горных пород и формы их залегания

Метаморфические горные породы - результат преобразования пород разного генезиса, приводящего к изменению первичной структуры, текстуры и минерального состава в соответствии с новой физико-химической обстановкой. Главными факторами (агентами) метаморфизма являются эндогенное тепло, всестороннее (петростатическое) давление, химическое воздействие газов и флюидов. Постепенность нарастания интенсивности факторов метаморфизма позволяет наблюдать все переходы от первично осадочных или магматических пород к образующимся по ним метаморфическим породам. Метаморфические породы обладают полнокристаллической структурой. Размеры кристаллических зерен, как правило, увеличиваются по мере роста температур метаморфизма.

Для метаморфических пород наиболее типичны ориентированные текстуры. К ним относятся, например, сланцеватая текстура, обусловленная взаимно параллельным расположением минеральных зерен призматической или пластинчатой форм; гнейсовая, или гнейсовидная текстура, характеризующаяся чередованием полосок различного минерального состава; в случае чередования полос, состоящих из зерен светлых и цветных минералов, текстура называется полосчатой. Внешне эти текстуры напоминают слоистость осадочных пород, но их происхождение связано не с процессом накопления осадков, а с перекристаллизацией и переориентировкой минеральных зерен в условиях ориентированного давления. Если метаморфическая порода мономинеральна и слагающий ее минерал имеет более или менее изометричные формы (кварц, кальцит), то в этом случае порода имеет неупорядоченную массивную текстуру. Все метаморфические породы имеют плотную текстуру.

Поскольку сходные по составу, структурам и текстурам метаморфические породы могут образоваться за счет изменения как магматических, так и осадочных пород, к названиям метаморфических пород, возникших по магматическим породам, прибавляется приставка "орто" (например, ортогнейсы), а к названиям метаморфических, первично-осадочных пород - приставка "пара" (например, парагнейсы) (Короновский, Якушова, 1991).

Процессы метаморфизма могут быть развиты на огромных площадях в десятки и даже сотни тысяч квадратных километров (региональный метаморфизм), но могут проявляться и на очень небольших площадях (локальный метаморфизм). Наибольшее распространение в земной коре имеют породы регионального метаморфизма (Емельяненко, Яковлева, 1985).

Породы регионального метаморфизма . Региональный метаморфизм происходит в диапазоне температур от 300-400 до 900-1000 С, давление меняется в пределах от 3-5-10 до 10-15-10 Па. Увеличение температуры и давления приводит к росту интенсивности метаморфизма. Породы различного первичного состава по-разному реагируют на изменение физико-химических условий. Метаморфизм простых по химическому составу пород, таких, как кварцевые песчаники или известняки, заключается только в изменении структуры и текстуры, а минеральный состав почти не изменяется. Кварцевые песчаники и другие богатые кремнеземом породы при метаморфизме превращаются в кварциты , которые состоят почти полностью из кварца, имеют полнокристаллическую, обычно мелкозернистую структуру. Текстура, как правило, массивная. Цвет кварцитов различен.

Карбонатные породы (известняки, доломиты и др.) превращаются в мраморы , полнокристаллические мономинеральные агрегаты кальцита, обладающие массивной текстурой. Разнообразная окраска мраморов связана с неоднородностями исходных пород.

При метаморфизме карбонатных железисто-магнезиальных осадочных пород, а также основных и, отчасти, средних магматических пород образуются амфиболиты (соответственно пара- и орто-), состоящие главным образом из роговой обманки и среднего плагиоклаза и обладающие полнокристаллической структурой и сланцеватой текстурой.

Постепенное нарастание интенсивности метаморфизма полнее всего можно проследить на примере преобразования первично-глинистых (пелитовых) пород. К метаморфическим породам, возникшим за их счет и отвечающим сравнительно невысоким температурам, но значительному ориентированному давлению, относятся филлиты . Метаморфические изменения выражены в них появлением мельчайших кристалликов слюд и сланцеватой текстуры. Кристаллы, не различимые невооруженным глазом, придают породам сильный шелковистый блеск, хорошо видимый на плоскостях сланцеватости. Несколько более глубоко метаморфизованные породы того же глинистого ряда представляют серицит- и хлоритсодержащие сланцы. В этих породах первичные глинистые минералы уже полностью перекристаллизованы и кристаллические зерна новообразованных минералов имеют вполне различимые на глаз размеры, т.е. структура пород полнокристаллическая. Текстура сланцеватая.

В условиях более высоких температур и давления возникают кристаллические сланцы , существенную роль, в которых играют слюды. Для кристаллических сланцев характерны средне- и крупнозернистая структура, и сланцеватая текстура. К ним относятся слюдяные сланцы, состоящие из кварца, слюды и небольшого количества полевых шпатов. По преобладанию той или иной слюды различают мусковитовые, биотитовые и двуслюдяные сланцы. Если в кристаллических сланцах роль главного минерала играет роговая обманка, сланцы называются роговообманковыми. При дальнейшем нарастании температур слюдяные сланцы переходят в парагнейсы. Гнейсы состоят преимущественно из кварца, полевых шпатов и слюд; меньшая роль принадлежит амфиболам и пироксенам. Породам присущи полнокристаллическая средне- и крупнозернистая структура и гнейсовая (полосчатая) текстура.

Нарастание метаморфизма прослеживается и по магматическим породам. Общее направление метаморфических изменений для первично кислых и средних пород заключается в переходе их на ранних стадиях в слюдяные ортосланцы, а затем и ортогнейсы. Для основных пород этот ряд представлен хлоритсодержащими сланцами, в которых обычно присутствуют в больших количествах тальк, эпидот, актинолит (минералы класса силикатов). При более глубоком метаморфизме сланцы превращаются в ортоамфиболиты. Ультраосновные породы преобразуются в тальковые сланцы, а затем в серпентиниты . Серпентиниты состоят главным образом из серпентина и имеют присущую ему зеленую окраску разных тонов, доходящую почти до черной. Структура скрытокристаллическая, текстура массивная.

При ультраметаморфических условиях, характеризующихся сочетанием очень высоких температур и давлений, многие из перечисленных пород переходят в гранулиты - кварц-полевошпатовые породы, содержащие значительные количества гранатов (преимущественно пиропа); структура полнокристаллическая мелко- и тонкозернистая, текстура гнейсовидная. При большем давлении образуются эклогиты, массивные породы с плотностью 3,35- 4,2 г/см, состоящие преимущественно из двух минералов - граната и пироксена (омфацита).

Перечисленные породы представляют наиболее распространенные в земной коре продукты регионального метаморфизма, но далеко не исчерпывают всего их многообразия.

Из пород, связанных с локальным метаморфизмом, упомянем роговики , возникающие на контакте внедрившейся магмы с вмещающими, преимущественно глинистыми породами. Основным фактором метаморфизма при этом является тепловое воздействие расплава, кроме того, давление его на консолидированные породы и привнос некоторых летучих. Роговики обладают микрокристаллической структурой, различной, часто серой до черной, окраской, массивной текстурой. Определенный микроскопически минеральный состав зависит от исходного состава первичных пород. Наиболее обычны кварц, полевые шпаты, амфиболы, пироксены. Роговики часто бывают рудоносны (Ермолов, Ларичев, Мосейкин, 2004).

Литература

Емельяненко П. Ф. Петрография магматических и метаморфических пород / П.Ф. Емельяненко, Е.Б. Яковлева. М. МГУ,1985. – 305 с.

Ермолов В.А. Геология. Часть 1: Основы геологии / В.А. Ермолов, Л.Н. Ларичев, В.В. Мосейкин. – М.: МГУ, 2004. – 598 с.

Короновский Н.В. Основы геологии / Н.В. Короновский, А.Ф. Якушова. – М.: Высшая школа, 1991.