Реферат: Цветные металлы, их свойства и сплавы

Название: Цветные металлы, их свойства и сплавы
Раздел: Промышленность, производство
Тип: реферат

Цветные металлы, их свойства и сплавы

К цветным металлам* и сплавам относятся практически все металлы и сплавы, за исключением железа и его сплавов, образующих группу чёрных металлов. Цветные металлы встречаются реже, чем железо и часто их добыча стоит значительно дороже, чем добыча железа. Однако цветные металлы часто обладают такими свойствами, какие у железа не обнаруживаются, и это оправдывает их применение.

Выражение «цветной металл» объясняется цветом некоторых тяжёлых металлов: так, например, медь имеет красный цвет.

Если металлы соответствующим образом смешать (в расплавленном состоянии), то получаются сплавы. Сплавы обладают лучшими свойствами, чем металлы, из которых они состоят. Сплавы, в свою очередь, подразделяются на сплавы тяжёлых металлов, сплавы лёгких металлов и т.д.

Цветные металлы по ряду признаков разделяют на следующие группы:

- тяжёлые металлы — медь, никель, цинк, свинец, олово;

- лёгкие металлы — алюминий, магний, титан, бериллий, кальций, стронций, барий, литий, натрий, калий, рубидий, цезий;

- благородные металлы — золото, серебро, платина, осмий, рутений, родий, палладий;

- малые металлы — кобальт, кадмий, сурьма, висмут, ртуть, мышьяк;

- тугоплавкие металлы — вольфрам, молибден, ванадий, тантал, ниобий, хром, марганец, цирконий;

- редкоземельные металлы — лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, иттербий, диспрозий, гольмий, эрбий, тулий, лютеций, прометий, скандий, иттрий;

- рассеянные металлы — индий, германий, таллий, таллий, рений, гафний, селен, теллур;

- радиоактивные металлы — уран, торий, протактиний, радий, актиний, нептуний, плутоний, америций, калифорний, эйнштейний, фермий, менделевий, нобелий, лоуренсий.

Чаще всего цветные металлы применяют в технике и промышленности в виде различных сплавов, что позволяет изменять их физические, механические и химические свойства в очень широких пределах. Кроме того, свойства цветных металлов изменяют путём термической обработки, нагартовки, эа счёт искусственного и естественного старения и т. д.

Цветные металлы подвергают всем видам механической обработки и обработки давлением — ковке, штамповке, прокатке, прессованию, а также резанию, сварке, пайке.

Из цветных металлов изготовляют литые детали, а также различные полуфабрикаты в виде проволоки, профильного металла, круглых, квадратных и шестигранных прутков, полосы, ленты, листов и фольги. Значительную часть цветных металлов используют в виде порошков для изготовления изделий методом порошковой металлургии, а также для изготовления различных красок и в качестве антикоррозионных покрытий.

· - некоторые химические элементы Национальная Комиссия Украины (НКУ) рекомендует называть так: Серебро — Аргентумом, Золото — Аурумом, Углерод — Карбоном, Медь — Купрумом и т.д. Названия элементов в определённых случаях употребляются как имена собственные — пишутся с большой буквы в середине предложения. В школах дети (на уроках химии) называют азотную кислоту нитратной, серную — сульфурной и т.д. В остальных случаях (география, история и пр.) применяются общеупотребительные названия, т.е. золото называется золотом, медь — медью и т.д.

Цветные металлы и сплавы

Сплавы цветных металлов применяют для изготовления деталей, работающих в условиях агрессивной среды, подвергающихся трению, требующих большой теплопроводности, электропроводности и уменьшенной массы.

Медь— металл красноватого цвета, отличающийся высокой теплопроводностью и стойкостью против атмосферной коррозии. Прочность невысокая: ав = 180... ...240 МПа при высокой пластичности б>50%.

Латунь — сплав меди с цинком (10...40 %), хорошо поддается холодной прокатке, штамповке, вытягиванию <7ь = 25О...4ОО МПа, 6=35..15%. При маркировке лату-ней (Л96, Л90, ..., Л62) цифры указывают на содержание меди в процентах. Кроме того, выпускают латуни многокомпонентные, т. е. с другими элементами (Мп, Sn, Pb, Al).

Бронза — сплав меди с оловом (до 10%), алюминием, марганцем, свинцом и другими элементами. Обладает хорошими литейными свойствами (вентили, краны, люстры). При маркировке бронзы Бр.ОЦСЗ-12-5 отдельные индексы обозначают: Бр — бронза, О — олово, Ц — цинк, С —свинец, цифры 3, 12, 5-—содержание в процентах олова цинка, свинца. Свойства бронзы зависят от состава: бв=15О...21О МПа, б=4...8%, НВ60 (в среднем).

Алюминий — легкий серебристый металл, обладающий низкой прочностью при растяжении — аа = 80... ...100 МПа, твердостью — НВ20, малой плотностью — 2700 кг/м3, стоек к атмосферной коррозии. В чистом виде в строительстве применяют редко (краски, газооб-разователи, фольга). Для повышения прочности в него вводят легирующие добавки (Мп, Си, Mg, Si, Fe) и используют некоторые технологические приемы. Алюминиевые сплавы делят на литейные, применяемые для отливки изделий (силумины), и деформируемые (дюралюмины), идущие для прокатки профилей, листов и т.п.

Силумины — сплавы алюминия с кремнием (до 14%), они обладают высокими литейными качествами, малой усадкой, прочностью ои = 200 МПа, твердостью НВ50...70 при достаточно высокой пластичности 6== =5...10 %. Механические свойства силуминов можно существенно улучшить путем модифицирования. При этом увеличивается степень дисперсности кристаллов, что повышает прочность и пластичность силуминов.

Дюралюмины — сложные сплавы алюминия с медью (до 5,5 %), кремнием (менее 0,8%). марганцем (до 0,8 %), магнием (до 0,8 %) и др. Их свойства улучшают термической обработкой (закалкой при температуре 500...520°С с последующим старением). Старение осуществляют на воздухе в течение 4...5 сут при нагреве на 170°С в течение 4...5 ч.

Термообработка алюминиевых сплавов основана на дисперсном твердении с выделением твердых дисперсных частиц сложного химического состава. Чем мельче частицы новообразований, тем выше эффект упрочнения сплавов. Предел прочности дюралюминов после закалки и старения составляет 400...480 МПа и может быть повышен до 550...600 МПа в результате наклепа при обработке давлением.

В последнее время алюминий и его сплавы все шире применяют в строительстве для несущих и ограждающих конструкций. Особенно эффективно применение дюралюминов для конструкций в большепролетных сооружениях, в сборно-разборных конструкциях, при сейсмическом строительстве, в конструкциях, предназначенных для работы в агрессивной среде. Начато изготовление трехслойных навесных панелей из листов алюминиевых сплавов с заполнением пенопластовыми материалами. Путем введения газообразователей можно создать высокоэффективный материал пеноалюминий со средней плотностью 100...300 кг/м3

Все алюминиевые сплавы поддаются сварке, но она осуществляется более трудно, чем сварка стали, из-за образования тугоплавких оксидов АЬОз.

Особенностями дюралюмина как конструкционного сплава являются: низкое значение модуля упругости, примерно в 3 раза меньше, чем у стали, влияние температуры (уменьшение прочности при повышении температуры более 400°С и увеличение прочности и пластичности при отрицательных температурах); повышенный примерно в 2 раза по сравнению со сталью коэффициент линейного расширения; пониженная свариваемость.

Титан за последнее время начал применяться в разных отраслях техники благодаря ценным свойствам: высокой коррозионной стойкости, меньшей плотности (4500 кг/м3) по сравнению со сталью, высоким прочностным свойствам, повышенной теплостойкости. На основе титана создаются легкие и прочные конструкции с уменьшенными габаритами, способные работать при повышенных температурах.

Технологии подготовки поверхности металла

Надёжная антикоррозионная защита металла возможна только при высоком уровне подготовки поверхности.

Перед нанесением антикоррозионного лакокрасочного материала необходимо, прежде всего, выбрать технологию и метод подготовки поверхности металла перед окраской.

Существуют механические и химические методы подготовки поверхности. Механические методы имеют ряд ограничений в применении и не способны обеспечить хорошие защитные свойства лакокрасочных покрытий, особенно при их эксплуатации в жёстких условиях. В настоящее время широкое распространение получили химические методы подготовки поверхности. Данные методы позволяют обрабатывать изделия любой формы и сложности, легко поддаются автоматизации и обеспечивают высокое качество поверхности окрашиваемых изделий.

Как выбрать технологический процесс подготовки поверхности?

Какую схему подготовки поверхности следует выбрать для разных металлов, различных лакокрасочных покрытий и условий эксплуатации? Давайте обо всём по порядку.

Выбор технологии подготовки поверхности зависит от трёх основных факторов: условий эксплуатации окрашенных изделий, типа металла и применяемого лакокрасочного покрытия.

С точки зрения подготовки поверхности металлы можно разделить на две категории:

• чёрные металлы — сталь, чугун и др.;

• цветные металлы — алюминий, сплавы цинка, титана, меди, оцинкованная сталь и др.

Для подготовки поверхности чёрных металлов применяют фосфатирование, для обработки цветных металлов — фосфатирование или хроматирование. При одновременной обработке цинка и алюминия с чёрными металлами предпочтение отдают фосфатированию. Пассивирование применяют на заключительной стадии после операций фосфатирования, хроматирования и обезжиривания.

Технологические процессы подготовки поверхности изделий, эксплуатирующихся внутри помещений, могут состоять из 3-5 стадий.

Практически во всех случаях после проведения химической подготовки поверхности изделия сушат от влаги в специальных камерах.

Полный цикл химической подготовки поверхности выглядит так:

• обезжиривание;

• промывка питьевой водой;

• нанесение конверсионного слоя;

• промывка питьевой водой;

• промывка деминерализованной водой;

• пассивация.

Технологический процесс кристаллического фосфатирования предусматривает стадию активации непосредственно перед нанесением конверсионного слоя. При применении хроматирования могут быть введены стадии осветления (при использовании сильнощелочного обезжиривания) или кислотной активации.

Выбор технологии, обеспечивающей высокое качество подготовки поверхности перед окраской, обычно ограничен размерами производственных площадей и финансовыми возможностями. Если таких ограничений нет, то следует выбирать многостадийный технологический процесс, гарантирующий необходимое качество получаемых лакокрасочных покрытий.

Однако, как правило, с ограничивающими факторами приходится считаться. Поэтому для выбора оптимального варианта предварительной обработки поверхности следует провести предварительные испытания предполагаемых покрытий на месте.

Какой метод химической обработки металла лучше?

Для химической обработки металла применяют распыление (струйная обработка низкого давления), погружение, паро- и гидроструйный методы.

Для реализации первых двух методов используют специальные агрегаты химической подготовки поверхности (АХПП).

Выбор метода подготовки поверхности зависит от производственной программы, конфигурации и габаритов изделий, производственных площадей и ряда других факторов.

Обработка металла распылением. Для обработки металла методом распыления можно применять АХПП как тупикового, так и проходного типов. Высокую производительность обеспечивают агрегаты проходного типа непрерывного действия.

Максимальная скорость движения конвейера в АХПП ограничивается возможностью качественного нанесения ЛКМ в камере окраски и составляет, как правило, не более 2,0м/мин. При возрастании скорости конвейера потребуется расширение производственных площадей.

Большим достоинством АХПП проходного типа является возможность применения единого конвейера для участков подготовки поверхности и окраски изделий.

Обработка металла погружением. Для обработки металла методом погружения используют АХПП, состоящие из ряда последовательно расположенных ванн, оборудования перемешивания, транспортёра, разводки трубопроводов, камеры сушки. Изделия транспортируют с помощью тельфера, автооператора или кран-балки. Агрегат обработки погружением занимает значительно меньше производственной площади по сравнению с агрегатом обработки распылением. Но в этом случае после подготовки поверхности потребуется введение дополнительной операции — перевешивания изделий на конвейер окраски.

Пароструйный метод. Для подготовки к окраске крупногабаритных изделий, а также при отсутствии необходимых производственных площадей возможно применение пароструйной обработки металла (обезжиривание с одновременным аморфным фосфатированием). Металлообработка производится оператором вручную стволом-очистителем, из которого на изделия распыляется пароводяная смесь при температуре 140°С с добавками специальных химикатов.

Для пароструйной обработки можно применять стационарные и передвижные установки. В стационарных установках нагрев осуществляется паром при давлении 4,5- 5,0ати.

Обработка металла

Выбор технологии подготовки поверхности и обработки металла — ответственный этап организации покрасочных работ, так как он во многом определяет качество будущего лакокрасочного покрытия и должен производиться с привлечением квалифицированных специалистов.

Только такой подход может обеспечить высокое качество антикоррозионного покрытия и заданный срок службы металлической конструкции.

Термическая обработка цветных металлов

Термическая обработка цветных металлов. Как правило, цветные металлы подвергают термической обработке для удобства работы с ними.

Медь отжигают, нагревая ее до температуры 500— 650°С и охлаждая в воде. Если мягкую медь нагреть, а потом постепенно охладить на воздухе, она станет более твердой.

Латунь и алюминий отжигают при нагревании соответственно до 600—750°С и 350—410°С с последующим охлаждением на воздухе.

Бронзу закаливают нагреванием до 800—850°С с последующим охлаждением в воде. Если ее нагреть до той же температуры и охладить на воздухе, она отпустится.

Дюралюминий Д1 и Д6 закаливают нагреванием до 500°С с последующим охлаждением в воде, однако окончательную твердость он приобретет при комнатной температуре через 4—5 дн. Этот процесс называется старением. Для облегчения сгибания, особенно под острыми углами, дюралюминиевые детали отжигают. Для этого деталь нагревают до 350—400°С, затем медленно охлаждают на воздухе.

Особенности цветных металлов

1. Некоторые металлы (медь, магний, алюминий) обладают сравнительно высокими теплопроводностью и удельной теплоемкостью, что способствует быстрому охлаждению места сварки, требует применения более мощных источников теплоты при сварке, а в ряде случаев предварительного подогрева детали.

2. Для некоторых металлов (медь, алюминий, магний) и их сплавов наблюдается довольно резкое снижение механических свойств при нагреве, в результате чего в этом интервале температур металл легко разрушается от ударов, либо сварочная ванна даже проваливается под действием собственного веса (алюминий, бронза).

3. Все цветные сплавы при нагреве в значительно больших объемах, чем черные металлы, растворяют газы окружающей атмосферы и химически взаимодействуют со всеми газами, кроме инертных. Особенно активные в этом смысле более тугоплавкие и химически более активные металлы: титан, цирконий, ниобий, тантал, молибден. Эту группу металлов часто выделяют в группу тугоплавких, химически активных металлов.

Особенности обработки цветных металлов

Цветные металлы прочны и долговечны, способны переносить высокие температуры. Недостаток только один — способность корродировать и разрушаться под воздействием кислорода .

Одним из самых эффективных методов защиты цветного металла от атмосферной коррозии считается нанесение защитных лакокрасочных материалов. Существуют три группы средств для защиты металлических поверхностей: грунтовки, краски и универсальные препараты «три в одном». Грунтовка — незаменимое средство борьбы с атмосферным окислением, одно- или двухслойное грунтование производится перед окрашиванием, помимо защитных свойств сообщая финишному покрытию лучшую адгезию к основанию. При выборе состава важно знать, что для разных металлов используются разные грунтовки

Для алюминиевых оснований используют специальные грунтовки на цинковой основе либо уретановые краски. Медь, латунь и бронзу обычно не красят — эти металлы поставляются на рынок с заводской обработкой, защищающей поверхность и подчеркивающей ее красоту. Если же целостность такого «фирменного» покрытия со временем нарушается , его лучше полностью удалить с помощью растворителя , после чего основание следует отполировать и покрыть эпоксидным или полиуретановым лаком .

LIKONDA® 25 : Процесс бесцветного хроматирования цветных металлов

Процесс бесцветного хроматирования цветных металлов

Процесс Likonda 25 предназначен для получения на серебре, меди и ее сплавах бесцветных хроматных пленок , полирующих и защищающих металлическую поверхность от коррозии.

Особенности процесса

· Бесцветные хроматные пленки получаются при одностадийной обработке .

· Коррозионная стойкость бесцветных хроматных пленок к воздействию влаги (по ГОСТ 9.012.73) составляет не менее 240 ч .

· Получаемые пленки стойки к истиранию в мокром виде , поэтому хроматирование можно проводить во вращательных установках .

· Раствор Likonda 25 может быть применен как на автоматических установках , так и при ручном обслуживании .

· Корректировка хроматирующего раствора во время эксплуатации осуществляется добавлением композиции Likonda 25 .

Хроматирование проводится методом погружения обрабатываемых деталей в раствор.

Состав раствора и режим работы

1. Композиция Likonda25 , г/дм3 70 – 78
Параметр Значение
pH Не контролируется
Температура, ºС 18 – 30
Продолжительность хроматирования, с. 5 – 45

Существует несколько методов нанесения защитных металлических покрытий: гальванический, диффузионный, металлизация, плакирование и погружение в расплавленный металл.

Гальваника – один из наиболее распространённых методов защиты металлических изделий от коррозии и придания им определённых свойств или улучшения их, путём нанесения специальных металлических или химических покрытий. На настоящее время гальваника распространена в машиностроении и строительстве. Гальваническое производство выполняет различные виды покрытий: никелирование, цинкование, хромирование, анодирование, фосфатирование и другие.

Свойства антикоррозийных покрытий напрямую зависят от толщины защитного слоя, толщина которого, в зависимости от резкости климатических условий, меняется в сторону увеличения.

Никелирование – это процесс нанесения тонкого слоя никеля на поверхность металлических изделий для защиты от коррозии. Никелирование бывает нескольких типов: электрохимическое, химическое, покрытие «чёрный никель».

При электрохимическом никелировании - никелем покрывают изделия из стали и цветных металлов для достижения высокой степени антикоррозийности и повышения износостойкости. Главным плюсом химического никелирования, в состав которого входит ещё до 12% фосфора, является равномерное распределение покрытия по поверхности изделия, а также повышенная антикоррозийная стойкость, износостойкость и твёрдость, полученные после термообработки.

Анодирование – это процесс получения защитной или декоративной поверхности различных сплавов (алюминиевых, магниевых и др.) под воздействием тока. Полученная плёнка обладает повышенными электроизоляционными, водостойкими и антикоррозионными свойствами.

Хромирование - это процесс, при котором наносится хром или его сплав на изделие из металла. При этом само изделие наделяется такими свойствами, как износостойкость, антикорозийность, жаростойкость и т.д. В наше современное время процесс хромирования очень распространен. Его в достаточном объеме используют как в машиностроении, так и в промышленности. Сам хром отличается большой стойкостью против негативного воздействия различных кислот, а также щелочей. Хром не может быть растворим в серной, азотной, соляной кислоте и т.д. Он не тускнеет, даже если его нагреть до 700 К.

Для красоты и ограждения от коррозии люди хромируют большое количество различных изделий. Процесс хромирования широко распространен в различных сферах. Например, часто хромируют предметы интерьера, среди которых некоторые детали мебели, ручки к дверям, таблички, статуэтки и т. д. Хромирование используют для долговечности нагрудных знаков (ордена, медали, значки и т. д.), аксессуаров к вещам (запонки, пряжки, зажимы к галстукам), ювелирных украшений. Также распространенная сфера применения - покрытие медицинских инструментов.

1.Алмазирование: -профильные шлифовальные круги в 10:300мм. Высотой до 100мм. -напильники длиной до 350мм. -шлифовальные оправки, надфили, шарошки и т. п. 2.Гальванические покрытия Никелирование, меднение: -мелкие детали для обработки во вращательной установке -детали для покрытия на подвесках габаритами до 420x500мм. Цинкование: -аналогично никелированию, но необходим выпрямитель электрического тока до 100 ампер. 3.Дополнительная обработка гальванопокрытий с целью повышения коррозионной стойкости при повышенной влажности – пропитка ГФЖ / гидрофобизирующая жидкость/. После обработки поверхность приобретает Водоотталкивающие свойства. 4.Рекуперация Снятие остаточного алмазного слоя на никелевой связке с алмазного инструмента для повторного использования стальной заготовки.