Статья: Краткая история глаза

Название: Краткая история глаза
Раздел: Биология и химия
Тип: статья

Александр Зайцев

Когда и как появился глаз? Вот уже второе столетие биологи спорят о происхождении зрения. Одни — вслед за Чарлзом Дарвином — полагают, что все разнообразные органы зрения, встречаемые нами у животных, можно свести к одному-единственному прототипу: своего рода „первоглазу“. Их оппоненты считают, что все эти органы возникали независимо друг от друга. Кто же прав? Лишь в последние годы тайна понемногу раскрывается — благодаря новым математическим моделям и открытиям генетиков.

Эвглена, стань человеком!

В принципе, все органы зрения предназначены для того, чтобы захватывать отдельные частицы света — фотоны. Вполне возможно, что ещё в докембрийский период жили организмы, способные воспринимать свет. Это могли быть и многоклеточные существа, и одноклеточные. Однако первое известное нам животное, наделённое зрением, появилось около 540 миллионов лет назад. А всего через сто миллионов лет, в ордовикском периоде, уже существовали все известные нам сегодня типы органов зрения. Нам остаётся лишь правильно расставить их, чтобы понять их эволюцию.

У одноклеточных животных — например, эвглены зелёной — имеется лишь светочувствительное пятно: „глазок“. Оно различает свет, что жизненно важно для той же эвглены, ведь без энергии света в её организме не может протекать фотосинтез, а значит, не образуются органические вещества. До появления этой органеллы — глазка — одноклеточные животные хаотично сновали в толще воды, пока случайно не попадали на свет. Эвглена же всегда плывёт только на свет.

У первых многоклеточных животных органы зрения были крайне примитивны. Так, у многих морских звёзд по всей поверхности тела разбросаны отдельные светочувствительные клетки. Эти животные способны лишь различать светлое и тёмное. Заметив проплывающую тень — хищник? — они спешат зарыться в песок.

У некоторых животных светочувствительные клетки группировались в виде „глазного пятна“. Теперь можно было, пусть и очень приблизительно, оценить, с какой стороны двигался хищник. Более пятисот миллионов лет назад глазные пятна появляются у медуз. Этот орган зрения позволял им ориентироваться в пространстве, и медузы заселяют открытое море. Дождевым червям подобные пятна помогают скрываться от света в земле.

Следующую ступень эволюции глаза демонстрируют ресничные черви. В передней части их тела имеются два симметричных пятна: в каждом из них до тысячи светочувствительных клеток. Эти пятна наполовину погружены в пигментную чашку. Свет падает лишь на верхнюю половину пятен, не прикрытую пигментом, и это позволяет животному определить, где находится источник света. При желании можно назвать ресничного червя „животным с двумя глазами“.

Постепенно глазное пятно ещё глубже вдавливалось в эпителий. Образовался желобок — „глазной бокал“. Подобным органом зрения обладают, например, речные улитки. Его чувствительность заметно зависит от направления взгляда. Однако улитка видит всё вокруг себя расплывчатым, словно глядит сквозь матовое стекло.

Острота зрения повышалась по мере того, как сужалось наружное отверстие глаза. Так появился глаз с точечным зрачком, напоминавший камеру-обскуру. Им смотрит на мир моллюск наутилус, родич давно вымерших аммонитов. Толщина глаза у наутилуса — около сантиметра. На его сетчатке имеется до четырёх миллионов светочувствительных клеток. Однако этот орган зрения улавливает слишком мало света. Поэтому мир для наутилуса выглядит мрачно.

Итак, на каком-то этапе эволюция привела к появлению двух различных органов зрения. Один — назовём его „глаз оптимиста“ — позволял видеть всё в светлых красках, но очертания предметов были смутными, неясными, расплывчатыми. Другой — „глаз пессимиста“ — видел всё в чёрных тонах; мир казался грубым, изломанным, резко очерченным. Именно от него и происходит наш человеческий глаз.

Позднее над зрачком нарастает прозрачная плёнка; она защищает его от попадания грязи и в то же время меняет его преломляющую способность. Теперь всё больше частиц света попадает внутрь глаза, к его светочувствительным клеткам. Так возникает первый примитивный хрусталик. Он фокусирует свет. Чем больше хрусталик, тем острее зрение. Для обладателя такого органа зрения — а именно он и называется „глазом“ — окружающий мир становится ярким и отчётливым.

Глаз оказался таким совершенным органом зрения, что природа „изобрела“ его дважды: он появился у головоногих моллюсков, а позднее у нас, позвоночных, причём у обеих групп животных выглядит он по-разному, да и развивается из различных тканей: у моллюсков — из эпителия, а у человека сетчатка и стекловидное тело возникают из нервной ткани, а хрусталик и роговица — из эпителия.

Добавим, что у насекомых, трилобитов, ракообразных и некоторых других беспозвоночных животных сформировался сложный — фасеточный — глаз. Он состоял из множества отдельных глазков — омматидиев. Глаз стрекозы содержит, например, до тридцати тысяч таких глазков.

Тут впору сделать заметку на полях. В своей книге „Происхождение видов путем естественного отбора“ Чарлз Дарвин назвал глаз „органом необычайного совершенства и сложности“, и именно это привело его в замешательство. Неужели „зеркало мира“, которое мы неизменно носим с собой, возникло из клочка кожи с вкраплёнными в него светочувствительными клетками — вроде тех, которыми наделён дождевой червь? Дарвин признавался, что эта гипотеза казалась ему „в высшей степени абсурдной“. А противники эволюционной теории по сей день приводят в пример именно глаз — несообразность его законам эволюции. Разве может — по чистой случайности — кожица превратиться в сложнейший орган чувств?

Однако они не правы. Так, глянув на несколько палочек, начерченных для счёта дикарём, и, переведя взгляд на самые сложные уравнения высшей математики, с трудом представляешь, что „одно произошло из другого путем долгой эволюции“. Но это именно так. Вот и в природе, оглядев её владения, мы отыскали обладателей самых разных органов зрения. Они помогли нам, пусть очень схематично, понять, как развивалось зрение, как рождались всё новые его органы. Что же добавляют в эту схему недавние исследования?

Полмиллиона лет на всю эволюцию?

Шведские биологи Дан-Эрик Нильсон и Сюзанна Пелгер из Лундского университета смоделировали на компьютере историю эволюции глаза. В этой модели всё началось с появления тонкого слоя клеток, чувствительных к свету. Над ним лежала прозрачная ткань, сквозь которую проникал свет; под ним — непрозрачный слой ткани.

Отдельные, незначительные мутации могли менять, например, толщину прозрачного слоя или кривизну светочувствительного слоя. Они происходили случайно. Ученые лишь внесли в свою математическую модель правило: если мутация улучшала качество изображения хотя бы на один процент, то она закреплялась в последующих поколениях.

Человеческий глаз устроен очень сложно: 1 — радужная оболочка; 2 — зрачок; 3 — хрусталик; 4 — сетчатка; 5 — область наиболее острого зрения; 6 — слепое пятно; 7 — кровеносный сосуд; 8 — зрительный нерв.

В конце концов, „зрительная плёнка“ превратилась в „пузырёк“, заполненный прозрачным студнем, а затем и в „рыбий глаз“, снабжённый настоящим хрусталиком. Нильсон и Пелгер попробовали оценить, сколько времени могла длиться подобная эволюция, причём они выбрали худший, самый медленный вариант развития. Всё равно результат оказался сенсационным. Краткая история глаза насчитывала всего… чуть более полумиллиона лет — сущий миг для планеты. За это время сменилось 364 тысячи поколений животных, наделённых различными промежуточными типами органов зрения. Путём естественного отбора природа „проверила“ все эти формы и выбрала лучшую — глаз с хрусталиком.

Задача, как выяснилось, была из лёгких.

Подобная модель наглядно доказывает, что как только первые примитивные организмы открыли саму возможность „запечатлевать“ мир — моментально копировать одним из своих органов расположение окружающих предметов и их форму, — тут же этот орган начал совершенствоваться, пока не достиг высшей формы развития. История глаза, в самом деле, оказалась краткой; она была „молниеносной войной“ за возможность „видеть всё в истинном свете“. В победителях числятся все — и человек, и рыбы, и насекомые, и улитки, и даже эвглена, порой получше нас, „амбивалентных“, различающая, где чёрное, а где белое.

Модель шведских учёных вполне вписывается в „ревизию биологических вех“, происходящую в последнее время в науке (см. „Знание — сила“, 2002, № 1). Известные нам ископаемые находки свидетельствуют — и мы уже упоминали об этом, — что эволюция органов зрения длилась сто миллионов лет. По всей вероятности, всё произошло значительно быстрее, и в той Книге жизни, что прочитали биологи, недостаёт пока многих страниц.

Эта математическая модель, а также генетические открытия убеждают нас в том, что различия между известными типами органов зрения не так велики, как казалось прежде. „Мы убедились, — отмечает немецкий биолог Кристоф Кампенхаузен, — что разные типы органов зрения возникают из-за незначительных изменений в геноме: одни гены активизируются, другие отключаются“.

Так, немецкий биолог Вальтер Геринг выяснил, что ген под названием Pax-6 формирует органы зрения у человека, мышей и плодовых мушек дрозофил. Если он имеет дефект, глаз не развивается вовсе или остаётся в зачаточном виде. В свою очередь, при встраивании гена Pax-6 в определённые участки генома у животного появлялись дополнительные глаза.

Опыты показали, что ген Pax-6 отвечает лишь за развитие органов зрения, а не за их тип. Так, с помощью гена, принадлежавшего мыши, учёный запускал механизм развития глаз у дрозофил, причём у них появлялись дополнительные органы зрения — тоже фасеточные — на ногах, крыльях и усиках. „С их помощью насекомые также могли воспринимать свет, — отмечает Вальтер Геринг, — ведь нервные окончания тянулись от дополнительных органов зрения к соответствующему участку головного мозга“.

Позднее тот же генетик сумел вырастить на голове лягушки дополнительные глаза, манипулируя геном Pax-6, взятым у дрозофилы. Его коллеги обнаружили тот же самый ген у лягушек, крыс, перепелов, кур и морских ежей. Исследование гена Pax-6 показывает, что все известные нам типы органов зрения могли возникнуть благодаря генетическим мутациям одного и того же „первоглаза“.

Впрочем, есть и другие мнения. Ведь, например, у медуз нет гена Pax-6, хотя органы зрения есть. Возможно, этот ген лишь на каком-то этапе эволюции стал управлять развитием зрительного аппарата. Вот что говорит по этому поводу Д.-Э. Нильсон: „У простейших организмов ген Pax-6 отвечает за формирование передней части тела, а поскольку она лучше всего приспособлена для размещения здесь органов чувств, этот ген позднее стал отвечать и за развитие органов зрения“.

Дальнейшее известно. Прошло сто миллионов лет, а, может быть, пятьдесят, а, может, ещё меньше… Или даже всего полмиллиона лет! Ну, об этом мы говорили, и наши глаза — дар древних одноклеточных? — подтвердят, что страницей выше об этом написано „чёрным по белому“. Надо только всмотреться!

Как животные видят мир?

Как выглядит мир? Для каждого живого существа по-разному! Для мышонка, как и для нас, помидоры полыхают аппетитным красным цветом. Для кошки, равнодушной к ним, это — уныло-серые наросты, пылящиеся среди листвы. Разве их можно есть?

Почему для кошки всё вокруг серо?

С заходом солнца блекнут все краски. Недаром старинная мудрость гласит: „Ночью все кошки серы“. В беззвёздной тьме тают и расплываются очертания рук, не видишь коробок спичек, поднесенный к глазам… Где уж рассмотреть кошек, крадущихся в придорожных кустах? Зато им мы видны, как на ладони.

Кошки, как и любые хищники, ведущие ночной образ жизни, хорошо видят в тёмное время суток. Во тьме их зрачки заметно расширяются, достигая диаметра 14 миллиметров. У человека диаметр зрачка не превышает восьми миллиметров. Значит, кошке требуется намного меньше света, чем человеку, чтобы различать предметы и других животных.

Кроме того, глаз кошки устроен по-иному. В его глубине, за сетчаткой, имеется особый отражающий слой — Tapetum lucidum. Он отбрасывает свет, попадающий кошке в глаза. Вот почему глаза кошки светятся в темноте жёлтым или зелёным. Благодаря этой особенности зрительные клетки, расположенные на сетчатке её глаз, получают вдвое больше света.

В летний день, когда всё залито ярким светом, зрачки кошки резко сужаются, превращаясь в тонкие щёлки. Ведь обилие света может повредить чувствительные клетки сетчатки. Так что глаза кошки хорошо защищены от прямых солнечных лучей. Вот почему её родичи — гепард, каракал, манул — живут и охотятся в пустыне.

В глазу человека есть два вида светочувствительных клеток: палочки и колбочки. Палочки различают тёмное и светлое. Благодаря им мы хоть что-то видим ночами. Колбочки воспринимают цвет. У кошки — те же два вида клеток. Вот только, если у человека на одну колбочку приходятся четыре палочки, то у мурлыки — двадцать пять! Вот почему кошки намного хуже нас видят цвета. Так, красный цвет вовсе недоступен им. Мир кошки выглядит блёклым и бледным. Научная мудрость гласит: „Днём всё вокруг кошки серо“. Лишь отдельные цвета — например, голубой — скрашивают её кругозор.

В самом деле, зачем кошке переливы красок? Её исконная добыча — мышь или воробей — одинаково съедобна, какими бы красками ей ни расписала пёрышки и шерсть Природа. Да и нет того выбора красок: преобладают серые и коричневые тона.

А вот для человека, как и для мыши, цветовое зрение часто бывает спасительно. Красный помидор можно есть; зелёный несъедобен. Золотистое зерно поспело; зелёное нет.

Что видят пчёлы пасмурным днём?

Пчёлы, как и кошки, не замечают красный цвет: он для них всё равно, что чёрный. Ботаники уже давно обратили внимание на то, что в природе сравнительно редко встречаются красные цветы, да и их опыляют бабочки. Оказывается, для пчёл привлекательны белые, жёлтые и голубые тона. Однако их мир раскрашен иначе, чем наш.

Богомол видит всё вокруг, даже не поворачивая голову.

Ведь люди тоже во многом слепы. Цветовой диапазон, доступный пчёлам, шире нашего. Они видят ультрафиолетовый свет. Многие цветки, которые кажутся нам белыми, предстают перед пчёлами в ином обличье. Для них среди монотонно-бледных лепестков вспыхивают яркие сине-фиолетовые узоры, указывающие, где искать нектар. Вот так и мы среди зелёной листвы легко разглядим спелую, лиловую сливу.

Для хищных птиц умение видеть ультрафиолетовый свет хорошо по другой причине. Это помогает им находить добычу. Ведь мелкие грызуны метят свою территорию струйкой мочи, а та светится ультрафиолетом. Ястреб легко замечает эти странные следы, оставленные мышонком возле жилища. Он шествует от одной красочной метки к другой, пока не находит незадачливого хозяина.

Похож ли орёл на пуантилиста?

Зрение птиц феноменально. Так, коршун с высоты 2000 метров заметит падаль, лежащую на земле. Глаза хищной птицы по праву можно назвать уникальным биноклем.

Устроены глаза птицы по-иному, чем у нас. Посреди глазного дна у человека имеется „жёлтое пятно“. Здесь больше всего чувствительных к свету клеток. Это — область наиболее острого зрения. В нашем глазу — всего одно „жёлтое пятно“, а вот у птиц — их два. Они могут одинаково хорошо видеть сразу два объекта, находящихся в стороне друг от друга. Так, дрозд в одно и то же мгновение может пристально всматриваться в червяка, которого задумал схватить, и в кошку, которая крадётся к нему самому.

Второе „жёлтое пятно“ лежит чуть глубже первого. Оно увеличивает предмет, на который смотрит птица. Вот почему у птицы глаз „как бинокль“. Недаром, когда мы хотим похвалить чье-то зрение, мы говорим, что „у этого человека орлиное зрение“.

Сверху вниз:

Эта южноамериканская лягушка хорошо видит в темноте, потому что глаза у неё навыкате; тарантул преследует свою добычу, значит, зрение у него хорошее.

Кстати, у самого орла на сетчатке глаза плотность светочувствительных клеток гораздо выше, чем у человека. Поэтому картинка, которую видит орёл, намного чётче и детальнее, чем то, что видим мы. Если бы он мимоходом глянул на обложку нашего журнала, то та показалась бы ему скоплением расцвеченных точек. Конечно, при очень большом увеличении и мы увидим то же самое: точки, точки, точки, как на картине художника-пуантилиста. А теперь представьте себе, что журнал лежит в нескольких метрах от вас и вы всё равно замечаете каждую точку в отдельности. Невозможно? Но именно так видит орел!

Кто сравнится с орлом?

Если принять остроту зрения орла за 100 процентов, то зрение человека составляет всего 52 процента от орлиного зрения. А вот каковы способности некоторых других видов животных:

осьминог — 32 процента от орлиного зрения;

паук-скакун — 9 процентов;

кошка — 7 процентов;

золотая рыбка — 5 процентов;

крыса — 0,7 процента;

дрозофила — 0,07 процента;

планария (ресничный червь) — 0,009 процента.

Читают ли гончие собаки журнал «Знание — сила»?

Острота зрения связана ещё и с тем, как хорошо глаз может разглядеть предметы, расположенные на разном расстоянии. Для этого он „приспосабливается“ к ним. Это свойство называют аккомодацией. У человека, как и у других млекопитающих, меняется кривизна хрусталика. Когда мы рассматриваем предмет, лежащий вблизи, хрусталик сильнее искривляется, и это меняет его преломляющую способность, или оптическую силу. Измеряют эту способность в диоптриях.

Молодой человек легко переводит взгляд с ближнего фона на дальний план. Хрусталик его глаза очень эластичен и меняет свою преломляющую способность на 14 диоптриев. А вот его любимая собака этим талантом обделена. У неё оптическая сила хрусталика может увеличиться лишь на один диоптрий. При таких природных задатках можно хорошо видеть либо в отдалении от себя, либо прямо перед собой. Так, гончие псы дальнозорки. Умей они понимать смысл наших тайных значков — букв, им всё равно никогда бы не удалось прочесть наш журнал. Строчки сливаются для них в одно тёмное пятно.

Кошки тоже лучше всего могут разглядеть предметы, находящиеся в стороне от них. Особенно хорошо они видят на расстоянии от двух до шести метров. Это очень удобно для охоты на птиц или мышей. На эту дистанцию кошка ещё может подкрасться к своей добыче и пристально за ней наблюдать, чтобы потом, улучив момент, броситься и схватить её.

Особенно удивителен хрусталик глаза у баклана. Его оптическая сила меняется на 50 диоптриев. Поэтому баклан может одинаково хорошо видеть в воздухе и под водой.

Возвращение красного цвета

Большинство млекопитающих не отличают красный цвет от зелёного. Они давно утратили эту способность, присущую птицам, рыбам и рептилиям. Ведь их далёкие предки, населявшие планету в одно время с динозаврами, заняли особую экологическую нишу: стали вести ночной образ жизни. Холодными ночами температура тела динозавров резко падала, как и их активность. Зато теплокровные млекопитающие ближе к полуночи выбирались из своих нор и укрытий и, осмелев, бродили в поисках пищи. За эту вольность они платили дефектами зрения. Им было всё равно, как окрашена добыча. Их мир был серым, чёрным, белёсым, но никак не разноцветным.

Однако обезьяны, как и человек, снова начинают различать красный и зелёный тона. Пытаясь объяснить этот „регресс“ зрения, учёные давно предположили, что цветовое зрение помогало обезьянам отличать спелые плоды от незрелых. Однако не все плоды, созревая, окрашиваются в красный цвет.

Недавно биологи Натаниэль Домини и Питер Лукас из Гонконгского университета выдвинули другую теорию — она понравилась многим их коллегам. В африканских лесах Домини и Лукас наблюдали за тем, какими листьями питаются шимпанзе и другие обезьяны. Они выбирали обычно молодые листья, нежные, питательные, легко перевариваемые организмом — и окрашенные обычно в красноватый оттенок. Возможно, именно это меню научило поколения приматов различать красный цвет. Любопытно, что в лесах Южной Америки молодые листья на деревьях редко имеют красноватый оттенок, и местные обезьяны, как и другие млекопитающие, не различают красный и зеленый цвета!

Почему глаза у обезьян такие тёмные?

Глаза шимпанзе, как и других человекообразных обезьян, на наш взгляд, выглядят странно. Ведь не только радужная оболочка, но и вся остальная часть глазного яблока окрашена у них в карий цвет. Долгое время считалось, что глаза человекообразных обезьян полностью пигментированы потому, что это защищает их от слепящего солнца. Однако японские биологи Хироми Кобаяси и Сиро Косима полагают, что такая окраска глаз защищает их обладателей от врагов. Глядя на глаза того же шимпанзе издали, трудно понять, в какую сторону смотрит обезьяна. Зрачок сливается с окружающей окраской, и определить направление взгляда трудно. Поэтому хищник, раздумывая, подкрадываться ли ему к обезьяне, не может понять, всматривается ли она в другую сторону или уже заметила его приближение и сейчас бросится наутёк. Невозможность напасть на обезьяну врасплох удерживает некоторых её врагов от нападения.

У человека, наоборот, радужная оболочка чётко выделяется на окружающем фоне, выдавая, в какую сторону он глядит. „Форма человеческих глаз оптимальна, чтобы обмениваться взглядами и привлекать к себе внимание других персон“, — поясняют японские учёные.

Обмен взглядами играет важную роль в нашей жизни. Язык взглядов так же выразителен, как и язык жестов или слов. А вот человекообразные обезьяны предпочитают выражать свои чувства не взглядами, которые у них трудно поддаются истолкованию, а движениями головы, например, покачиваниями или кивками. Пристальный взгляд у обезьян считается не знаком доверительности, а неприкрытой угрозой.