Статья: Уравнения и характеристики распространения волн реального электромагнитного поля
|
Название: Уравнения и характеристики распространения волн реального электромагнитного поля Раздел: Рефераты по физике Тип: статья |
В.В. СидоренковМГТУ им. Н.Э. Баумана Обсуждаются уравнения, структура и параметры реального электромагнитного поля состоящего из функционально связанных между собой четырех полевых векторных компонент: электрической и магнитной напряженностей, электрического и магнитного векторного потенциала, перемещающихся в пространстве совместно посредством единого волнового процесса. Считается, что все известные явления электромагнетизма обусловлены существованием и взаимодействием с материальными средами электромагнитного (ЭМ) поля, имеющего две векторные компоненты электрической Впоследствии, после триумфа теории Максвелла - открытия ЭМ волн (Герц, 1888 г.), первоначальная структура максвелловских уравнений была модернизирована Герцем, Хевисайдом и Эйнштейном, где новации заключались по существу лишь в уменьшении числа основных исходных уравнений. Но если говорить о положительном эффекте такой модификации, то их неоценимая заслуга состояла в методической и математической проработке этой теории. Предложенные «альтернативные» уравнения стали концептуально обозримы, логически более последовательны, имели удобный векторный вид и в определенной мере законченную форму, а в результате теория Максвелла приняла прозрачный в восприятии и современный при ее использовании вид. В современном окончательном виде именно эту модернизированную систему уравнений: (a) (c) после ряда промежуточных названий и стали называть уравнениями Максвелла классической электродинамики [2]. Здесь Но в своем развитии научная мысль динамична, и вскоре наступило время возникновения, становления и бурного развития теории микромира, а потому основной научный интерес физиков был перенесен в эту новую, модную область изучения загадок Природы. В итоге после работ Максвелла развитием классической электродинамики физики по существу не занимались, но она перешла в руки инженеров, задача которых принципиально иная. Ведь психологически по образованию профессиональные интересы инженера не направлены на развитие физической науки, его цель – внедрение достижений этой науки в новых конкретных устройствах и разработка различных ее технических применений. По этой причине, несмотря на грандиозный технический прогресс, уже многие десятилетия классическая электродинамика и родственные ей науки находятся в концептуальном застое. Как бы тому иллюстрацией сегодня повсеместно с помпой категорически утверждается, что данная область физического знания наиболее полно разработана во всех ее аспектах и ее современный уровень является вершиной человеческого гения. В этой связи попытаемся критически, но по возможности конструктивно проанализировать базовые основы классической электродинамики, которыми, по словам Герца, являются именно уравнения Максвелла. Как видим, эти уравнения рассматривают области пространства, где присутствует ЭМ поле, структурно реализуемое, согласно уравнениям (1а) и (1c), посредством динамически связанных между собой двух векторных взаимно ортогональных полевых компонент: электрической Важнейшим фундаментальным следствием уравнений Максвелла служит тот факт, что компоненты ЭМ поля
Аналогично можно получить волновое уравнение для магнитной напряженности С целью ответа на вопрос, какие это волны, и что они переносят, обратимся к закону сохранения энергии , аналитическая формулировка которого непосредственно следует из уравнений Максвелла (1) в виде так называемой теоремы Пойнтинга:
Согласно (2), поступающий извне поток ЭМ энергии, определяемый вектором Пойнтинга Обсудим характеристики распространения ЭМ поля в виде плоской линейно поляризованной волны в однородной изотропной материальной среде. С точки зрения большей общности при анализе характеристик распространения указанного поля обычно значительно удобней использовать не волновые уравнения, а напрямую – сами уравнения системы (1), являющиеся по сути дела первичными уравнениями ЭМ волны. Для этого рассмотрим пакет указанной волны, распространяющийсявдоль оси x
с компонентами
где В конкретном случае среды идеального диэлектрика ( Поскольку суть электромагнетизма – это взаимодействие ЭМ поля с материальной средой, то его анализ обычно сводится к стремлению описать энергетику ЭМ явлений. Обратимся и мы к соотношению энергетического баланса (2), которое для среды идеального диэлектрика запишется в виде:
Для анализа нам вполне достаточно рассмотреть, как выполняется выражение (3) для плоской монохроматической ЭМ волны, полевые компоненты которой, согласно волновым решениям уравнений Максвелла, в свободном пространстве без потерь при распространении совершают синфазные
колебания:
Здесь весьма странно то, что, согласно Итак, решение уравнений электродинамики Максвелла для ЭМ волны не отвечает обычным физическим представлениям о распространении энергии посредством волн в виде процесса взаимного преобразования во времени в данной точке пространства энергии одной компоненты поля в энергию другой его компоненты. Следовательно, электродинамические уравнения (1) описывают необычную, весьма странную волну, которую логично назвать псевдоволной , поскольку, с одной стороны, синфазные компоненты волны в принципе не способны переносить энергию, а с другой – перенос ЭМ энергии реально наблюдается, более того, это явление широко и всесторонне используется на практике, определяя многие аспекты жизни современного общества. Таким образом, имеем парадокс, существующий, как это ни странно, уже более века. Поражает здесь то, что традиционная логика обсуждения переноса ЭМ энергии такова, что проблемы как бы и нет, всем все понятно. И действительно, из соотношения для амплитуд в волновых решениях уравнений системы (1) В этой связи напомним основные физические представления о переносе энергии посредством волнового процесса, например, рассмотрим распространение волн от брошенного в воду камня. Частицы воды массой Для большей убедительности наших аргументов чисто формально рассмотрим энергетику распространения некой гипотетической
ЭМ волны
, у которой имеется сдвиг фазы колебаний между ее полевыми компонентами на
Усредняя это выражение по времени (по периоду колебаний), имеем Итак, проблема с выяснением механизма переноса энергии волнами ЭМ поля объективно существует, и для ее разрешения требуется, по всей видимости, весьма нестандартный эвристический подход. Но в наличии у нас имеется только система уравнений электродинамики Максвелла, а потому для разрешения обсуждаемого здесь парадокса ничего не остается, как продолжить критический анализ именно уравнений (1) с целью поиска новых (скрытых) реалий в их физическом содержании. И действительно, такие реалии в указанных уравнениях были обнаружены [4], а их суть заключена в соотношениях исходной первичной взаимосвязи ЭМ поля
с компонентами электрической (a) (b) Здесь соотношение (5a) вводится с помощью уравнения (1d), поскольку дивергенция ротора произвольного векторного поля тождественно равна нулю. Соответственно, (5b) следует из уравнения (1b) при Как видим, объединение соотношений в систему (5) оказалось весьма конструктивным, так как в этом случае возникает система дифференциальных уравнений, описывающих значительно более сложное и необычное с точки зрения общепринятых воззрений вихревое векторное поле
в виде совокупности функционально связанных между собой четырех вихрево-полевых компонент Объективность существования такого электродинамического
поля
иллюстрируется нетривиальными следствиями из полученных выше соотношений, поскольку подстановки (5c) в (5b) и (5d) в (5a) приводят к системе новых электродинамических уравнений, структурно полностью аналогичной системе традиционных уравнений Максвелла (1), но уже для поля ЭМ векторного потенциала
с электрической (a) (c) Чисто вихревой характер компонент поля векторного потенциала обеспечивается условием кулоновской калибровки посредством дивергентных уравнений (6b) и (6d), которые при этом представляют собой начальные условия в математической задаче Коши для уравнений (6a) и (6c), что делает эту систему уравнений замкнутой. Соответственно, математические операции с соотношениями (5) позволяют получить [4] еще две других системы уравнений: для электрического поля
с компонентами (a) (c) и для магнитного поля
с компонентами (a) (c) Поскольку соотношения системы (5) можно получить независимо посредством действия векторного оператора набла
и временной производной
в пространстве поля компонент Таким образом, уравнения (5) первичной исходной взаимосвязикомпонент ЭМ поля и поля ЭМ векторного потенциала, безусловно, фундаментальны и объективно являются основными уравнениями современной полевой теории электромагнетизма. Далее, как и следовало ожидать, из этих новых систем электродинамических уравнений непосредственно получаем (аналогично выводу формулы (2)) соотношения баланса: судя по размерности, для потока момента ЭМ импульса из уравнений (6)
для потока электрической энергии из уравнений (7)
и, наконец, для потока магнитной энергии из уравнений (8)
Все это действительно подтверждает и объективно доказывает, что, наряду с ЭМ полем
с векторными компонентами Можно убедиться, следуя логике рассуждений вывода волнового уравнения для поля вектора электрической напряженности Поскольку структурная симметрия уравнений систем (1) и (6) математически тождественна, а волновые решения уравнений (1) выше уже проанализированы, то далее анализ условий распространения плоских электродинамических волн в однородных изотропных материальных средах проведем, прежде всего, для уравнений систем (7) и (8). Их необычные структуры между собой также тождественны, а волновые решения уравнений в литературе не рассматривались. Итак, рассмотрим волновой пакет плоской линейно поляризованной электрической волны
с компонентами В конкретном случае среды идеального диэлектрика (
Главная специфика здесь состоит в том, что при распространении в диэлектрической среде компоненты поля сдвинуты между собой по фазе на Справедливости ради здесь уместно сказать, что впервые о реальности магнитной поперечной волны
с двумя ее компонентами Аналогичные рассуждения для пакета плоской волны векторного потенциала
с компонентами Как видим, именно уравнения поля ЭМ векторного потенциала (6) описывают перенос в пространстве потока момента импульса , который со времен Пойнтинга пытаются описать с помощью уравнений ЭМ поля (1) (см. анализ в [6]). В этой связи укажем на пионерские работы [7], где обсуждается неэнергетическое (информационное) взаимодействие векторного потенциала со средой при передаче в ней потенциальных волн и их детектирование с помощью эффекта, аналогичного эффекту Ааронова-Бома. Здесь важно отметить, что система уравнений (5) иллюстрирует тот непреложный факт, что динамическое существование поля ЭМ векторного потенциала сопровождается неразрывно сопутствующим ему традиционным ЭМ полем. Причем, как установлено, перенос компонентами этих двух полей потока соответствующей физической величины существует, но не посредством обычного волнового процесса, который принципиально невозможен, но он реализуется опосредованно в виде так называемых псевдоволн . Согласно проведенному здесь анализу, для проводящей среды в асимптотике металлов ( Однако вернемся к обсуждению энергетики распространения составляющих реального электромагнитного поля
в виде плоских волн в диэлектрической среде без потерь (
Выясним, что представляет собой это выражение для энергии монохроматической электрической волны
, полевые компоненты которой, согласно волновым решениям уравнений системы (7), обладая сдвигом фазы на
Такой результат вполне удовлетворяет закону сохранения энергии , поскольку усреднение по времени этого соотношения дает
а потому электрической волной
переносится чисто электрическая энергия
: Соответственно, для магнитного поля , распространяющегося в среде без потерь, уравнение энергетического баланса (11) запишется в виде:
Рассмотрим, как выполняется этот закон для плоской монохроматической магнитной волны
, полевые компоненты которой, согласно волновым решениям уравнений (8), имеют вид:
Итак, в случае магнитного поля
снова приходим к физически здравому результату, когда в пространстве без потерь посредством магнитной волны
переносится чисто магнитная энергия Таким образом, аргументированно показано, что в Природе объективно существует весьма сложное и необычное с точки зрения традиционных представлений вихревое четырехвекторное поле
в виде совокупности функционально связанных между собой четырех вихрево-полевых компонент Установлено, что способностью к непосредственному распространению в пространстве в виде волн, отвечающих обычным физическим представлениям о волновом процессе, обладают только волны электрического
и магнитного полей
за счет наличия у них сдвига фазы колебаний на Однако современными методами регистрации электродинамических полей наблюдают только псевдоволны
“обычного” ЭМ поля, компоненты Как видим, застарелый, возрастом более века парадокс существования волн ЭМ поля и переноса ими энергии этого поля, наконец, успешно и весьма нетривиально разрешен, а результаты проведенных исследований представляют собой серьезное концептуальное развитие основных физических воззрений на структуру и свойства ЭМ поля в классической электродинамике. Кстати, методически серьезных проблем не должно возникнуть, если обсуждаемое здесь реальное электромагнитное поле сохранит за собойи традиционное в электромагнетизменынешнее название – электромагнитное поле с учетом современного развития физических воззрений и его нового содержания. Также с методической точки зрения следует отметить, что настоящий материал вместе с результатами работ [4] может служить концептуальной базой модернизации учебных курсов и создания новых пособий по общей физике, классической электродинамике и родственным им техническим дисциплинам. Литература 1. Максвелл Дж. К. Трактат об электричестве и магнетизме. Т. I и II. М.: Наука, 1989. 2. Матвеев А.Н. Электродинамика. М.: Высшая школа, 1980. 3. Пирогов А.А. // Электросвязь. 1993. №5. С. 13-14. 4. Сидоренков В.В. // Труды X Всероссийской школы-семинара «Физика и применение микроволн». Секция 2. “Электродинамика”. - М.: МГУ, 2005. С. 2-7; // Необратимые процессы в природе и технике: Сборник научных работ. Выпуск I. - М.: МГТУ им. Н.Э. Баумана, 2005. - С. 127-138; // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2006. № 1. С. 28-37; // Материалы IX Международной конференции «Физика в системе современного образования». Санкт-Петербург: РГПУ, 2007. Секция 1. “Профессиональное физическое образование”. С. 127-129; // Вестник Воронежского государственного технического университета. 2007. Т. 3. № 11. С. 75-82. 5. Докторович З.И. // Заявленное открытие "Магнитные поперечные волны" приоритетная справка 32-ОТ №10247, дата поступления 5 мая 1980 г. 6. Соколов И.В. //УФН. 1991. Т. 161.№ 10. С. 175-190. 7. Чирков А.Г., Агеев А.Н. // ФТТ. 2002. Т. 44. Вып. 1. С. 3-5; 2007. Т. 49. Вып. 7. С. 1217-1221. 8. Сидоренков В.В. // Труды V Всероссийской конференции «Необратимые процессы в природе и технике». Часть I. - М.: МГТУ им. Н.Э. Баумана, 2009. - С. 166-170. |
, (d)
.
и
. (4)
, (d)
, (b)
, (b)
.
(10)
.(11)
и
.
, (13)
. (15)