Статья: Граничные условия на стыке двух диэлектриков. Теорема о циркуляции
|
Название: Граничные условия на стыке двух диэлектриков. Теорема о циркуляции Раздел: Рефераты по математике Тип: статья | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
. М.И. Векслер, Г.Г. Зегря Любая граница раздела двух сред может считаться плоской на достаточно малом участке. Кроме того, в пределах достаточно малого участка поле векторов На незаряженной границе двух диэлектриков нормальные и тангенциальные компоненты преобразуются следующим образом:
Левое соотношение получается из теоремы Гаусса, примененной к области в форме очень тонкого параллелепипеда, серединной плоскостью которого является граница раздела диэлектриков. Для получения второго соотношения привлекается теорема о циркуляции
Контуром служит узкая прямоугольная рамка, плоскость которой перпендикулярна к границе раздела, рассекающей рамку пополам. Левая часть равенства есть
Задача. Плоскость xy представляет собой границу раздела диэлектрик с проницаемостью ε1 (z<0) - воздух (z>0). Напряженность электрического поля в воздухе составляет E2, а вектор Решение: По условию, откуда сразу По правилам преобразования нормальных и тангенциальных компонент,
С учетом общего соотношения
Теперь можно полностью выписать Поляризованность в воздухе отсутствует, а в диэлектрике:
При вычислении поверхностного связанного заряда нужна только нормальная компонента, а именно: Вычисление циркуляции вектора Знак выбирается в зависимости от напрaвления обхода контура. Заметим, что если бы мы считали циркуляцию Проверка выполнения законов преобразования компонент
Задача. Часть площади плоского конденсатора заполнена диэлектриком ε1, другая часть ε2. Найти Ответ: Комментарий: граница раздела диэлектриков перпендикулярна обкладкам. По обе стороны этой границы поле параллельно границе и одинаково по величине: нормальная к данной границе составляющая при этом вообще отсутствует. Таким образом, выполнено условие для тангенциальных компонент вектора Обобщение данной задачи: пусть в плоском конденсаторе с обкладками x1 и x2, проницаемость изменяется как
Частный случай - ε меняется только в направлении, перпендикулярном полю (например, кусочно). Аналогичную ситуацию можно рассмотреть в сферическом и цилиндрическом конденсаторах ( Задача. В вакууме на расстоянии l от плоской границы с диэлектриком проницаемости ε расположен небольшой шарик, заряженный зарядом q. Найти поверхностную плотность связанного заряда на границе раздела как функцию расстояния r от проекции центра шарика на плоскость.
Решение Вводим систему координат таким образом, что ось z перпендикулярна плоскости раздела сред xy. Тогда заряд q имеет координаты (0, 0, z). Будем искать решение в виде
Значок 1 отвечает полупространству, в котором находится заряд. Потенциал указанного вида подчиняется уравнению Пуассона. Действительно, для полупространства без заряда Δφ2 = 0, так как особенность функции φ2(z, r) находится вообще вне этого полупространства. Что касается φ1(z, r), то Найдем z-компоненту поля, соответствущую введенному потенциалу:
Поскольку z-компонента является нормальной компонентой к границе раздела, для нее должно быть выполнено условие Dz1 = Dz2, то есть Помимо этого требования, необходимо обеспечить непрерывность потенциала, а именно
Два вышеуказанных условия приводят к соотношениям
из которых имеем Поверхностный связанный заряд найдется как Проинтегрировав σ' по площади, получаем полный связанный заряд Список литературы 1. И.Е. Иродов, Задачи по общей физике, 3-е изд., М.: Издательство БИНОМ, 1998. - 448 с.; или 2-е изд., М.: Наука, 1988. - 416 с. 2. В.В. Батыгин, И.Н. Топтыгин, Сборник задач по электродинамике (под ред. М.М. Бредова), 2-е изд., М.: Наука, 1970. - 503 с. 3. Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика. т.8 Электродинамика сплошных сред, 2-е изд., М.: Наука, 1992. - 661 с. |



