Реферат: Основні поняття та визначення ЕЕГ Ряд та інтеграл Фурє
|
Название: Основні поняття та визначення ЕЕГ Ряд та інтеграл Фурє Раздел: Рефераты по коммуникации и связи Тип: реферат |
Основні поняття та визначення ЕЕГ. Ряд ТА інтеграл Фур'є 1. Ритми ЕЕГ дорослої людини, яка не спить Електроенцефалографія (ЕЕГ) є одним з методів одержання біомедичної інформації. Електроенцефалографія – це метод дослідження головного мозку, який полягає у реєстрації його електричних потенціалів. ЕЕГ являє собою складний коливальний електричний процес, що може бути зареєстрований при розташуванні електродів на мозку чи на поверхні скальпа. ЕЕГ є результатом електричної підсумовування і фільтрації елементарних процесів, що протікають у нейронах головного мозку. Спектр ЕЕГ є досить складним: існує класифікація ритмів ЕЕГ по деяких основних діапазонах. Під поняттям «ритм» на ЕЕГ розуміється визначена смуга частот. До ритмів ЕЕГ дорослої людини, яка не спить, відносяться альфа Альфа-ритм характеризується частотою 8÷13 Гц, амплітудою до 100 мкВ. Реєструється у 85÷95% здорових дорослих обстежуваних; найкраще виражений у потиличних відділах, за напрямком наперед амплітуда його поступово зменшується. Для здорових людей характерний відносно вузький діапазон Бета-ритм характеризується частотою 14÷40 Гц, амплітудою до 15 мкВ. Найкраще Мю-ритм характеризується частотою 8÷13 Гц, амплітудою до 50 мкВ. 2. Види активності, патологічні для дорослої людини, яка не спить До патологічних проявів на ЕЕГ відноситься поява повільних ритмів: тета Одним з важливих аспектів застосування ЕЕГ є вивчення епілепсії. Дані сучасних досліджень свідчать про те, що мозок при епілепсії характеризується рядом функціональних перебудов на макро- і мікроструктурному рівні. Показано наявність деполяризаційного зсуву потенціалу мембрани нейронів, що визначає їхню підвищену схильність до генерації потенціалів дії. Це призводить у свою чергу до підвищення обсягу процесів збудження, розгальмовування шляхів і зв'язків, що у нормі загальмовані. У результаті в синхронні розряди втягуються набагато більші обсяги мозкових структур, ніж у нормі. Отже, однією з основних особливостей мозку при епілепсії є властивість нейронів давати більш активні реакції збудження і вступати у синхронізовану активність. Процес синхронізації активності нейронів приводить до наростання амплітуди ЕЕГ у результаті підсумовування амплітуд синфазних коливань. Гострі хвилі і піки найчастіше комбінуються з повільними хвилями. Комплекс, що виникає при комбінації піка з хвилею, називається «піки – хвилі» (рис. 1д). Зазвичай ці комплекси мають високу амплітуду, причому амплітуди піка і хвилі, як правило, корелюють. Комплекси піки – хвилі зазвичай йдуть серіями повторюваних феноменів, причому при накладанні вони збігаються. Часто кілька піків комбінуються з однією хвилею. Такий комплекс називається «множинні піки – хвилі». Комплекс, що нагадує за формою комплекс піки – хвилі, але має велику амплітуду, називається «гостра хвиля – повільна хвиля» (рис. 1е). Зазвичай повільна хвиля має більшу тривалість, ніж хвиля, що йде за піком у комплексі піки – хвилі. Частота комплексів піки – хвилі складає 2,5-6 Гц. Частота комплексів гостра хвиля – повільна хвиля – 0,7-2 Гц. Наявність епілептичних феноменів у мозку є прямим доказом того, що у відповідній області відбуваються гіперсинхронні, патологічні розряди великих груп нервових клітин. Повторне виявлення епілептичних розрядів у визначеній постійній області мозку свідчитиме про наявність фокального епілептичного ураження. Одним з основних критеріїв при аналізі ЕЕГ є симетрія. Під симетричністю ЕЕГ розуміють істотний збіг частот, амплітуд і фаз симетричних областей двох півкуль мозку. Відносно патологічних форм активності говорять про сторону її амплітудної переваги, а не абстрактно про її асиметрію. За поширеністю цих асиметричних патологічних коливань говорять про порушення півкулі, коли зміни охоплюють усю півкулю, і фокальних (зазвичай максимально виражаються під одним електродом і різко знижуються за представленням й амплітудою під сусідніми).
Рисунок 1 – Основні типи епілептичної активності 3. Артефакти на ЕЕГ та їхнє усунення Артефакти на ЕЕГ поділяються на дві групи – фізичні і фізіологічні. Фізичні артефакти обумовлені порушеннями технічних правил реєстрації ЕЕГ. Зазвичай це перешкоди від електричних полів, які створюються пристроями промислового електричного струму. Вони легко розпізнаються, оскільки являють собою синусоїдальні коливання частотою 50 Гц (рис. 2). У деяких електроенцефалографах передбачені вузькосмугові фільтри, які усувають вузьку смугу в області 50 Гц (рис. 3а). Інший тип артефактів представлений різкими стрибками позитивних і негативних відхилень напруги (рис. 3б). Від пароксизмальних розрядів ці артефакти відрізняються формою, крутизною, раптовістю появи. Причини цих перешкод: · мінливість контакту і рух електродів; · поляризація електрода; · нагромадження електричних зарядів на тілі обстежуваного.
Рисунок 2 – Спектр ЕЕГ з завадою мережі Іноді мають місце артефакти від електромагнітних завад, створених спалахами світла фотостимулятора (рис. 3в). Їхня амплітуда не залежить від частоти мигтіння і набагато перевершує амплітуду власних коливань ЕЕГ. Фізіологічні артефакти пов'язані з проявами життєдіяльності організму і мають такі причини: · потенціали, обумовлені діяльністю м'язів, – електроміограма (ЕМГ) (рис. 3г); · електричні потенціали, пов'язані з рухом очей, – електроокулограма (ЕОГ) (рис. 3з); · потенціали електрокардіограми (ЕКГ) (рис. 3д); · електричні потенціали, викликані ковтальними рухами (рис. 3е); · електричні потенціали, пов'язані зі змінами фізіологічного стану шкіри (рис. 3ж). ЕМГ являє собою нерегулярну високочастотну (15–100 Гц) електричну активність загостреної форми. Амплітуда ЕМГ може приймати різні значення. ЕМГ може бути найбільш виражена в потиличних, скроневих і лобових відведеннях. Від нормального Потенціали ЕКГ легко розпізнаються за характерною формою і появою через рівні проміжки часу, що відповідають періоду скорочень серця. Вони обумовлені неоднаковою відстанню електродів від серця, за рахунок чого виникає різниця потенціалів ЕКГ. Спостерігаються відносно рідко. Потенціали ЕОГ найчастіше мають форму одно– чи двофазних коливань з періодом 0,3–1 с. Іноді частота ЕОГ вище – 4–6 Гц. Звідси випливає, що частотний діапазон ЕОГ збігається з Електричні потенціали, викликані ковтальними рухами, являють собою повільні хвилі з періодом 0,5–2 с, що зазвичай поширюються при монополярному відведенні по всіх каналах. Електричні потенціали, викликані зміною стану шкірних покривів, являють собою повільні хвилі високої амплітуди з періодом 1–5 с, що зазвичай поширюються по всіх каналах. Усунення цих артефактів пов'язане з істотними труднощами. Допомагає повторне зняття ЕЕГ. Іноді мають місце артефакти, пов'язані з рухом електрода і зміною потенціалу шкіри в результаті механічних зсувів унаслідок пульсації розташованої поблизу артерії. Вони мають форму і частоту пульсограми. Ці артефакти легко усуваються зміною місця розташування електрода. Основне правило, яким керується досвідчений лікар при аналізі ЕЕГ: «Будь-яка активність у ЕЕГ, яка реєструється тільки під одним електродом, є артефактом». Основні види артефактів наведені на рис. 3. Правильне інтерпретування сигналів на ЕЕГ – це якоюсь мірою мистецтво. Зміни, схожі з епілептичними розрядами, можуть викликатися рухом очей і м'язами голови, пульсацією кровоносних судин, дихальними рухами, роботою серця, жуванням, ковтанням, доторканням до електрода, пересуванням інших людей по кімнаті, де проводиться дослідження.
Рисунок 3 – Основні види артефактів 4. Визначення спектральної щільності ЕЕГ 4.1 Ряд та інтеграл Фур'єПоняття про розкладання Фур'є можна вважати вам уже відомим. Тому згадаємо лише основні співвідношення і визначення. Починаємо з визначення періодичної функції
де
Визначення (1) виражає основну властивість періодичної функції, яка полягає в тому, що хід явища періодично повторюється, і періодичність ця існує вічно, тобто для всього часу від – З цього відразу можна зробити висновок, що періодичних явищ у точному розумінні визначення (1) немає і бути не може. Періодична функція є корисна математична абстракція. Будь-яка – з несуттєвими для нас математичними обмеженнями – періодична функція може бути представлена рядом за тригонометричними функціями
Періодична функція Вираз (2) може бути переписаний в інший, дуже вживаній формі
де
так що
Коефіцієнти
Величина
Чудовою властивістю ряду Фур'є є те, що якщо взяти кінцеве число членів ряду, тобто апроксимувати періодичну функцію тригонометричним поліномом, представивши її у вигляді
то для будь-якого Ряд Фур'є може бути також записаний у комплексній формі в такий спосіб:
де
Величина 2
Підсумовування в (7) ведеться за всіма цілими Ряд Фур'є дає розкладання періодичної функції за тригонометричними функціями. Це розкладання може бути узагальнено і на випадок неперіодичної функції. Неточний, але наочний шлях до одержання розкладання Фур'є неперіодичної функції полягає в застосуванні граничного переходу при
Перейдемо до границі, спрямовуючи
Ця частота є частотним інтервалом між сусідніми гармоніками, частоти яких дорівнюють
де
Сума перейде в інтеграл, і ми одержимо:
чи
де
Формули (10) і (11) є основними формулами теорії спектрів. Вони являють собою пари перетворень Фур'є, що пов'язують між собою дві функції: дійсну функцію часу
Частотний інтервал між двома сусідніми коливаннями також нескінченно малий; він дорівнює Якщо ряд Фур'є являє собою періодичну функцію сумою хоча і нескінченного числа синусоїд, але з частотами, що мають визначені дискретні значення, то інтеграл Фур'є подає неперіодичну функцію сумою синусоїд з безперервною послідовністю частот. У складі неперіодичної функції є всі частоти. Одна з особливостей, що відрізняє інтеграл Фур'є від ряду Фур'є, полягає в тому, що ряд Фур'є подає періодичну функцію як суму періодичних складових, тоді як інтеграл Фур'є – неперіодичну функцію сумою періодичних складових. Отже, у випадку інтеграла Фур'є сумі не притаманні властивості своїх доданків, і цю обставину необхідно враховувати у міркуваннях загального характеру про спектральне розкладання Фур'є. Зазначимо насамкінець, що формулу (10) можна записати в дійсній формі; тоді інтегрування проводитиметься тільки по позитивних частотах. Увівши позначення
одержимо (з огляду на те, що А – парна, а В – непарна функція)
Можна одержати ще один запис формули (10), подавши її у вигляді
У квадратних дужках поставлена сума сполучених величин, що дорівнює подвоєній дійсній частині. Тому
|




. (2)
, (3)
.
, (4)
. (5)
. (6)
,
, (7)
, (8)
.
. (11)
. (13)
.
.