Курсовая работа: Расчет каскадов ЧМ передатчика
|
Название: Расчет каскадов ЧМ передатчика Раздел: Рефераты по коммуникации и связи Тип: курсовая работа |
| Курсовой проект по дисциплине «Устройства генерирования и передачи сигналов» по теме: «Расчет каскадов ЧМ передатчика» Составление блок-схемы передатчика
Составление блок-схемы передатчика начинается с выходного каскада начинается с выходного каскада. Данные, определяющие его мощность, содержатся в задании. Также задается колебательная мощность в антенне в режиме несущей частоты. В данном передатчике необходимо применить умножитель частоты, в качестве которого может работать предоконечный или дополнительный предварительный каскад, включаемый между возбудителем и предоконечным каскадом. Вид блок-схемы передатчика с частотной модуляцией представлен на рисунке:
Техническое задание:
Требуется произвести расчет передатчика, работающего на 120 МГц. Вид модуляции – частотная (ЧМ) Максимальная девиация частоты – 100 кГц Вид передаваемых сообщений – аудиосигналы Мощность передатчика – 100 Вт 1. Расчет выходного каскада
Для работы в выходном каскаде выберем транзистор Приведем его характеристики. Тип – кремниевый n‑канальный высокочастотный МОП – транзистор вертикальной структуры, выполненный по технологии с двойной диффузией, рекомендован производителем для применения в промышленных устройствах в КВ\УКВ диапазоне. Достоинства: – высокий коэффициент усиления по мощности (19 дБ на 108 МГц) – низкие интермодуляционные искажения – высокая температурная стабильность – устойчивость при работе на согласованную нагрузку. Технические характеристики: Пробойное напряжение сток-исток Ток утечки сток-исток Ток утечки затвор-исток Крутизна линии граничного режима Напряжение отсеки определим по проходной характеристике транзистора Крутизна передаточной характеристики S = 5 См Коэффициенты Берга, соответствующие выбранному углу отсечки Расчетные данные
Ток стока
1. Коэффициент использования стокового напряжения
2. Амплитуда стокового напряжения:
3. Амплитуда первой гармоники стокового тока:
4. Амплитуда импульсов стокового тока:
5. Постоянная составляющая стокового тока:
6. Эквивалентное сопротивление нагрузки:
7. Напряжение возбуждения:
Напряжение смещения для угла отсечки = 7. Посчитаем входную мощность ГВВ:
8. Коэффициент усиления по мощности:
Таким образом, схема генератора с внешним возбуждением будет выглядеть так: 9. Выходное сопротивление транзистора:
Для согласования с пятидесятиомной нагрузкой нужна схема с неполным включением индуктивности, при этом, емкость конденсатора в колебательном контуре рекомендуется брать 2. Расчет модулятора
В проектируемом передатчике частотная модуляция будет получена из фазовой методом расстройки колебательного контура: Схема модулятора выглядит следующим образом:
Выберем диод Д902. При напряжении смещения 5 В, его характеристика имеет достаточно большую крутизну и линейность. По графику для Д902 определяем S=2 пФ/В. Амплитуда возбуждения звуковой частоты – 1 В, значит максимальное изменение емкости составит 2 пФ. Начальная емкость 8 пФ. В результате подбора параметров получены следующие величины: Частота возбуждения: Коэффициент умножения – 10 Индуктивность: Максимальное отклонение частоты от
Зададим добротностью колебательного контура, равной 20. Величина фазовой модуляции:
Девиация частоты при частоте модулирующего сигнала 15 кГц:
Индекс модуляции, получаемый в фазовом модуляторе: M=0,307. При умножении частоты в 10 раз, индекс модуляции получится равным 3,07. Выберем транзистор КТ312А. Он обладает следующими параметрами:
Расчет коллекторной цепи Выбираем напряжение на коллекторе 1. Коэффициент использования коллекторного напряжения:
2. Амплитуда напряжения на коллекторе:
3. Амплитуда первой гармоники коллекторного тока:
4. Амплитуда импульсов коллекторного тока:
Выполним проверку условия 5. Постоянная составляющая постоянного тока:
6. Эквивалентное сопротивление нагрузки, обеспечивающее рассчитываемый режим:
7. Мощность, потребляемая от источника питания:
8. Мощность, рассеиваемая на коллекторе:
При этом, мощность, рассеиваемая на коллекторе, меньше предельно допустимой. 9. КПД коллекторной цепи:
Расчет базовой цепи 1. Находим предельную частоту транзистора, при которой коэффициент передачи по току в схеме с общим эмиттером равен 1:
2. Рассчитываем время дрейфа транзистора:
3. Определим угол дрейфа на высшей частоте:
Т.к. угол дрейфа меньше 4. Амплитуда переменного напряжения на переходе эмиттер-база:
5. Модуль коэффициента передачи напряжения со входа на переход эмиттер-база:
6. Амплитуда напряжения возбуждения, требуемая от источника возбуждения:
7. Входное сопротивление:
8. Мощность возбуждения:
9. Первая гармоника тока базы:
10. Реальная величина тока базы:
Напряжение смещения, обеспечивающее заданный угол отсечки базового тока:
11. Максимальное значение положительного импульса тока базы:
12. Постоянная составляющая положительных импульсов тока базы:
13. Мощность рассеяния в цепи базы:
14. Рассчитаем сопротивления делителя напряжения цепи смещения
3. Расчет возбудителя
Схема возбудителя с кварцевой стабилизацией. Выбираем транзистор КТ312А. Приведем параметры, применяемые при расчете:
Определим коэффициент обратной связи:
Для заданной частоты – 10,1 МГц –
Рассчитаем емкость
Тогда, емкость
Вычисляем функцию угла отсечки:
По таблицам значений Берга, это значение соответствует Расчет коллекторной цепи возбудителя Выбираем напряжение на коллекторе В генераторе необходимо развить мощность, требующуюся для возбуждения следующего каскада с учетом потерь в согласующей цепи:
1. Коэффициент использования коллекторного напряжения:
2. Амплитуда напряжения на коллекторе:
3. Амплитуда первой гармоники коллекторного тока:
4. Амплитуда импульсов коллекторного тока:
. 5. Постоянная составляющая постоянного тока:
6. Эквивалентное сопротивление нагрузки, обеспечивающее рассчитываемый режим:
7. Мощность, потребляемая от источника питания:
8. Мощность, рассеиваемая на коллекторе:
При этом, мощность, рассеиваемая на коллекторе, меньше предельно допустимой. 9. КПД коллекторной цепи:
Расчет базовой цепи возбудителя 1. Находим предельную частоту транзистора, при которой коэффициент передачи по току в схеме с общим эмиттером равен 1:
2. Рассчитываем время дрейфа транзистора:
3. Определим угол дрейфа на высшей частоте:
Т.к. угол дрейфа меньше 4. Амплитуда переменного напряжения на переходе эмиттер-база:
5. Модуль коэффициента передачи напряжения с входа на переход эмиттер-база:
6. Амплитуда напряжения возбуждения:
7. Входное сопротивление:
8. Мощность возбуждения:
9. Первая гармоника тока базы:
10. 11. Напряжение смещения, обеспечивающее заданный угол отсечки базового тока:
12. Сопротивление в цепи базового смещения, обеспечивающее заданное напряжение смещения R = 4590 Ом. 4. Расчет умножителя частоты Для умножения частоты в 10 раз нужно выбрать угол отсечки При таком малом угле отсечки резко увеличивается ток возбуждения, падает КПД и выходная мощность, поэтому, чтобы получить необходимую для следующего каскада мощность приходится применять мощный транзистор КТ904А Схема умножителя:
В расчете требуются 10-е коэффициенты Берга: Умножитель должен на 10-й гармонике развивать мощность 0,06 Вт. Расчет коллекторной цепи Напряжение питания: 1. Коэффициент использования коллекторного напряжения:
2. Коэффициент использования коллекторного напряжения на 10‑й гармонике:
3. Амплитуда напряжения на коллекторе:
4. Амплитуда первой гармоники коллекторного тока:
5. Амплитуда десятой гармоники коллекторного тока:
6. Амплитуда импульсов коллекторного тока:
7. Постоянная составляющая постоянного тока:
8. Эквивалентное сопротивление нагрузки коллекторного контура на 10-й гармонике:
Расчет базовой цепи 1. Находим предельную частоту транзистора, при которой коэффициент передачи по току в схеме с общим эмиттером равен 1:
2. Рассчитываем время дрейфа транзистора:
3. Определим угол дрейфа на высшей частоте:
Т.к. угол дрейфа меньше 4. Амплитуда переменного напряжения на переходе эмиттер-база:
5. Модуль коэффициента передачи напряжения со входа на переход эмиттер-база:
по графику определяем 6. Амплитуда напряжения возбуждения, требуемая от источника возбуждения:
7. Входное сопротивление:
8. Мощность возбуждения:
9. Первая гармоника тока базы:
10. Реальная величина тока базы:
11. Напряжение смещения, обеспечивающее заданный угол отсечки базового тока:
Колебательный контур, на который нагружен транзистор, должен при частоте 100 МГц иметь эквивалентное сопротивление 1650 Ом:
Рассчитаем емкость и индуктивность:
Индуктивность на входе:
5. Расчет предоконечного каскада
Схема предоконечного каскада В первой части расчета мощность возбуждения выходного каскада получилась равной 2,11 Вт. С учетом потерь в согласующей цепи. Зададим мощность предоконечного каскада: Исходя из требований по мощности и частоте, выберем транзистор КТ903А. Угол отсечки примем равным Расчет коллекторной цепи Выбираем напряжение питания 1. Коэффициент использования коллекторного напряжения:
2. Амплитуда напряжения на коллекторе:
3. Амплитуда первой гармоники коллекторного тока:
4. Амплитуда импульсов коллекторного тока:
5. Постоянная составляющая постоянного тока:
6. Эквивалентное сопротивление нагрузки, обеспечивающее рассчитываемый режим:
7. Мощность, потребляемая от источника питания:
8. Мощность, рассеиваемая на коллекторе:
При этом, мощность, рассеиваемая на коллекторе, меньше предельно допустимой. 9. КПД коллекторной цепи:
Расчет базовой цепи 1. Находим предельную частоту транзистора, при которой коэффициент передачи по току в схеме с общим эмиттером равен 1:
2. Рассчитываем время дрейфа транзистора:
3. Определим угол дрейфа на наивысшей частоте:
4. Нижний угол отсечки положительных импульсов эмиттерного тока:
Коэффициенты 5. Модуль коэффициента передачи по току на рабочей частоте:
где 6. Амплитуда первой гармоники тока эмиттера:
7. Амплитуда положительного импульса эмиттерного тока:
8. Постоянная составляющая тока эмиттера:
9. Амплитуда переменного напряжения на переходе эмиттер-база:
10. Модуль коэффициента передачи напряжения с входа на переход эмиттер-база:
по графику определяем 11. Амплитуда сигнала возбуждения, требуемая от предыдущего каскада:
12. Входное сопротивление:
13. Мощность, требуемая от предыдущего каскада:
14. Первая гармоника тока базы:
15. Напряжение смещения:
16. Индуктивность на входе:
17. Емкость и индуктивность на выходе колебательного контура:
Расчет коэффициентов трансформации согласующих трансформаторов 1. Согласование возбудителя и модулятора.
2. Согласование модулятора и умножителя частоты.
3. Согласование умножителя частоты и предусилителя.
Список использованной литературы
1. «Радиопередающие устройства» – под ред. В.В. Шахгильдяна, РиС, 1996 г. 2. «Проектирование и техническая эксплуатация радиопередающих устройств» – Сиверс Г.А., РиС, 1989 г. 3. «Проектирование радиопередающих устройств» – под ред. В.В. Шахгильдяна, РиС, 1998 г. |











рад/с
















(
, где 




– добротность кварца
















































