Реферат: Использование цепей Маркова в моделировании социально экономических процессов
|
Название: Использование цепей Маркова в моделировании социально экономических процессов Раздел: Рефераты по математике Тип: реферат | ||
| Тема: ” Использование цепей Маркова в моделировании социально-экономических процессов ” Содержание:
1. Основные понятия теории марковских цепей. 2. Теорема о предельных вероятностях. 3. Области применения цепей Маркова. 4. Управляемые цепи Маркова. Выбор стратегии. Список использованной литературы.
§1. Основные понятия теории марковских цепей . Пусть { Для описания эволюции этой системы введем последовательность дискретных случайных величин Последовательность P( Для цепей Маркова вероятность в момент времени n попасть в состояние Вероятности Цепь Маркова называется однородной, если вероятности перехода Вероятности перехода удобно располагать в виде квадратной матрицы
Матрица P называется матрицей вероятностей перехода однородной цепи Маркова за один шаг. Она обладает следующими свойствами: а) б) для всех i: Квадратные матрицы, для которых выполняются условия а) и б), называются стохастическими . Вектор Свойства однородных цепей Маркова полностью определяются вектором начальных вероятностей и матрицей вероятностей перехода. Приведем пример: Завод выпускает телевизоры определенного типа. В зависимости от того, находит ли данный тип телевизора спрос у населения, завод в конце каждого года может находиться в одном из состояний: состояние 1 – спрос есть, состояние 2 – спроса нет. Пусть вероятность сохранить состояние 1 в в следующем году с учетом возможного изменения спроса равна
В конкретных случаях для описания эволюции цепи Маркова вместо явного выписывания матрицы P используют граф, вершинами которого являются состояния цепи, а стрелка, идущая из состояния Можно показать, что матрица вероятностей перехода цепи Маркова за n шагов равняется n-ой степени матрицы P вероятностей перехода за один шаг. Для однородной цепи Маркова при любом m выполняется равенство P( Но последняя вероятность есть вероятность перехода из состояния
§2. Теорема о предельных вероятностях . В 1930 году Дж.Биркгофом и Дж.фон Нейманом была сформулирована и доказана одна из основных эргодических теорем – теорема о предельных вероятностях: Если при некотором
Предельные вероятности
Физический смысл этой теоремы заключается в том, что вероятности нахождения системы в состоянии Цепь Маркова, для которой существуют пределы Если из состояния Состояние
§3. Области применения цепей Маркова . Цепи Маркова служат хорошим введением в теорию случайных процессов, т.е. теорию простых последовательностей семейств случайных величин, обычно зависящих от параметра, который в большинстве приложений играет роль времени. Она предназначена, главным образом, для полного описания как долговременного, так и локального поведения процесса. Приведем некоторые наиболее изученные в этом плане вопросы. Броуновское движение и его обобщения – диффузионные процессы и процессы с независимыми приращениями. Теория случайных процессов способствовала углублению связи между теорией вероятностей, теорией операторов и теорией дифференциальных уравнений, что, помимо прочего, имело важное значение для физики и других приложений. К числу приложений относятся процессы, представляющие интерес для актуарной (страховой) математики, теории массового обслуживания, генетики, регулирования дорожного движения, теории электрических цепей, а также теории учета и накопления товаров. Мартингалы. Эти процессы сохраняют достаточно свойств цепей Маркова, чтобы для них оставались в силе важные эргодические теоремы. От цепей Маркова мартингалы отличаются тем, что когда текущее состояние известно, только математическое ожидание будущего, но необязательно само распределение вероятностей, не зависит от прошлого. Помимо того, что теория мартингалов представляет собой важный инструмент для исследования, она обогатила новыми предельными теоремами теорию случайных процессов, возникающих в статистике, теории деления атомного ядра, генетике и теории информации. Стационарные процессы. Самая старая из известных эргодических теорем, как отмечалось выше, может быть интерпретирована как результат, описывающий предельное поведение стационарного случайного процесса. Такой процесс обладает тем свойством, что все вероятностные законы, которым он удовлетворяет, остаются инвариантными относительно сдвигов по времени. Эргодическую теорему, впервые сформулированную физиками в качестве гипотезы, можно представить как утверждение о том, что при определенных условиях среднее по ансамблю совпадает со средним по времени. Это означает, что одну и ту же информацию можно получить из долговременного наблюдения за системой и из одновременного (и одномоментного) наблюдения многих независимых копий той же самой системы. Закон больших чисел есть не что иное, как частный случай эргодической теоремы Биркгофа. Интерполяция и предсказание поведения стационарных гауссовских процессов, понимаемых в широком смысле, служат важным обобщением классической теории наименьших квадратов. Теория стационарных процессов – необходимое орудие исследования во многих областях, например, в теории связи, которая занимается изучением и созданием систем, передающих сообщения при наличии шума или случайных помех. Марковские процессы (процессы без последействия) играют огромную роль в моделировании систем массового обслуживания (СМО), а также в моделировании и выборе стратегии управления социально-экономическими процессами, происходящими в обществе. В качестве примера рассмотрим управляемые цепи Маркова. §4. Управляемые цепи Маркова. Выбор стратегии . Завод по изготовлению телевизоров, находясь в состоянии 1, может увеличить спрос путем организации рекламы. Это требует добавочных затрат и уменьшает доход. В состоянии 2 завод может увеличить вероятность перехода в состояние 1 путем увеличения затрат на исследования. Выделим две стратегии. Первая состоит в отказе от затрат на рекламу и исследования, а вторая - в согласии на них. Пусть матрицы переходных вероятностей и матрицы доходов для данных стратегий имеют вид: В рассмотренной ситуации имеет место управляемая цепь Маркова. Управление соответствует выбору стратегии. Пусть каждому состоянию Пусть в i-м состоянии имеется не одно, а - она получает доход - ее состояние в следующий момент времени определяется вероятностью Таким образом, смысл Кроме того,
Управляемой цепью Маркова
называется конструкция, задаваемая параметрами Назовем решение, принимаемое в конкретный момент, частным управлением. Тогда управление есть последовательность решений в моменты n = 1, 2, ... Качество управления можно оценить средним суммарным доходом (при конечном времени) или среднем доходом в единицу времени (при бесконечном времени). Пусть Стратегией
где Стратегия Обозначим произвольную конечную часть стратегии через
Таким образом, при фиксированной стратегии Обозначим называется оптимальной Верны следующее утверждения: Утверждение 1. Для бесконечного времени существует оптимальная стационарная стратегия. Утверждение 2. Для конечного времени существует оптимальная марковская стратегия. Таким образом, решение (при бесконечном времени) зависит только от состояния, в котором находится система, и не зависит ни от момента времени, ни от всей предыдущей траектории последовательности состояний и принятых решений). В случае конечного времени оптимальная стратегия является марковской, т. е. может зависеть еще и от момента времени принятия решения. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ: 1. «Теория выбора и принятия решений»: учебное пособие. И.М. Макаров, Т.М. Виноградская, А.А. Рубчинский, В.Б. Соколов. Москва, изд. «Наука», 1982. 2. «Теория вероятностей» Е.С. Вентцель. Москва, изд. «Наука», 1969. |


