Статья: Единая геометрическая теория классических полей
|
Название: Единая геометрическая теория классических полей Раздел: Рефераты по физике Тип: статья | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
. . (dimstein@list.ru)
, . , 2007 .
. - ,
- . - ! !
! ! . " ! ! , # $$# !. % & , ! , ! & .
1. ! " # # . $ # - , – # . % , # # & & – ’ . ( ( # &# & & ) # . ) # , ’ # . & # # , ’ # &. * ’ ’ # # , - , . * & #&# # # & & – & & – # !" # " (# ) . +# # # & #, # ’ # # # . ( # (’ # - , # ). ( & # & # # & & – ’ . ,# , & , ’ # #. ) # , # ’ , # #. * # # ( ! ( ’ # ), # ’ . $ ’ # & # . 2.
# &# ( ! , & ’ . ) – - -% "& - [14]. * ’ &# # # & & & & , # &: # #, # # ( , #). , - -% , 24 .
# , - -% . ( #" , # ’ . * . # # , # . . 0 - , ’ , , & (Ωα⋅µν=Ωα⋅[µν]): (1) Ωα ⋅ µν=∆α µ ν−∆α ν µ# ∆α µ ν – . * ’ . . ∆α µ ν # : (2) # K
(K α µν= K [ αµ] ν), Γµ α ν – % ( , . 1-3). $ # # " $. # & ( ) ’ ( ’ # ) #: (3) +∆(αβ) d 2x µ (4) (3) #, (4) ’ . . $ (3) (4) # #, #, # : (5) ∆µ(αβ) =Γαµβ $ (2) ’ # !: (6) ∆µ [ αβ] = K µ ⋅ αβ , # # #. , # (K α µν= K [ αµν] ). . (1) (6) ’ ! (7)
* ’ .
3. !" " !"# !- " $ % ! && #
, & - - -% , #, ( ), ’ #, , # . 1) # : (8) ds 2 = g µν dx µ dx ν g µ ν # ∇α g µ ν= 0, # ∇α – # # x α ( , . 4-5). 2) . . 0 , , ", # & . , A
#: (9) ∆α µ ν=Γµ α ν + iA α ⋅ µν# A α µν=−A µ αν=−A α νµ=−A ν µα= A [ αµν] . . % # : (10) $ # A
# #: (11) A αµν=−εαµνσA σ # A µ – # , εα βµν – 2 3 . A µ # # : (12) A
µ=− ( # ’ , # # ’ a µ : (13) a µ = q ˆA µ # q ˆ – ’ #. . ! (13) ’ . % q ˆ # # ! # , , & ( A
1 " (9) # : (14) Ωα ⋅ µν= 2∆α [ µν] = 2iA α ⋅ µν $ # " . * # , # ∆α µ ν # # , # Γµ α ν ( , . 6).
1 - &# " - R
1 F µ ν , # F µν : (25) F
µ
ν= 2 * (24) (11), & &#, # - (25) : (26) F µν =∂µ A ν −∂ν A µ, # " ’ . . (13) (26) " ’ f µ ν # # # - : (27) f µν =∂µ a ν −∂ν a µ = q ˆF µν. - (21) # : (28) R = g µνR (µν) = R ~ − 6 A αA α # R ~ = R ~ µ ⋅µ – . 1 , # ’ , # # & ’ . * ’ ’ ( ), " ’ – - . A µ # - F µ ν & ’ a µ " f µ ν, & & ’ .
4. ’ $ !"( %’ #$"# #
4 , # - , , :
# LG – # . 2 , - , # , (29). 2 LG , ( ! , - . * & ’- ( , . 9-10) - : (30.1) Rc
(30.2) Rc
(30.3) Rc
(30.4) Rc (4) ≡δα⋅β⋅γ⋅λ⋅µνστR µνR αβR στR γλ * " & - # #, , " & # . & "& & - (30) # # . * Rc (1) (30.1) # R . (28) (13) : (31) Rc
(1) = R
= R
~ −6A
αA
α= R
~ − $ Rc (2) (30.2) δα ⋅ β ⋅ µν & # - ,
(32)
# & # & & - Rc (1) Rc (2) , " ! # . 3 LG . (§ 2). . ’ # # L 2 (R ) , # : (33) L 2 = (R − R 0 )2 = R 2 − 2R 0 R + R 0 2 # R 0 – . 2 LG L 2 & - : (34) L G = L 2 (R n →Rc (n ) )=Rc (2) −2R 0Rc (1) + R 02 $ (34) # # & " # (33). * R 0 , &# LG , # , . . " (31) (32) # #: (35) . ’ , &#: (36) κR 0 (37) Λ= R 0 4 # Λ – (Λ ~ 10−56 −2 ), κ – ( ! . .
(38) 2
(39) 2 ~ = g # R (40) (41) # (42) (43) G µ ν – . ’ 1 ’ ’ # µν R ~ µν. $ g µν , Γµ α ν a α ( ) ( (10)): G
µ
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| , |
, |
, |
|||
| ’ . * |
’ |
||||
| . $ |
R 0 |
||||
| & |
(40) |
(41) |
& , |
||
| & |
& |
||||
| ’ |
. |
(41) |
|||
| # |
a µ " |
f µν |
|||
| . $ |
, # |
a µ , |
|||
| , # f µ ν, |
|||||
| ’ |
. |
|||||
| - |
T ˆµν (43), |
&# |
(40) |
|||
| ’ - : |
’ |
. % |
# |
’ |
(44)
µ
a
µ
| . * # |
(41) (41) |
& # |
&#, |
. ~ ∇µ a µ = 0. |
1 T ˆ µ ν # # ’ #
&, ’ - :
(45) ∇µ T ˆµν = ∇~ µ T ˆµν = 0
$ & (45) (40) #
" # 5 , & .
#
R 0 . . (40) :
(46)
− R
~ + R
0 = − 3κ4πR
0 a
αa
α = −6A
αA
α
, # " (28) &#,
(47) R 0 = R ~ −6A α A α = R
1 , R 0 . *
(40) ! (47) !.
(40) (41) # ,
, & ( ),
& #. 3 ,
, . $ :
(48) G
µ
![]()
(49) ∇~ σ f µσ +3R 0 a µ =ξj µ
# T µ ν = T ˆ µ ν +T ~ µν, T ~ µν – ’ - , T µ ν – ’ - , j µ – , ξ – (ξ= 4π/ ).
& & #
, & # :
(50) ∇µ πµ = ∇~ µ πµ = 0
(51) ∇µ j µ = ∇~ µ j µ = 0
# πµ = µu µ ( ), j µ = ρu µ ( #), µ –
, ρ – # , u µ –
# (dx
µ
d
τ
). $ µ ρ # ,
" . $ & µ, ρ u µ , # .
- #
. * # (49) #
& # (51) 2 #
’ :
(52) ∇µ a µ = ∇~ µ a µ = 0
(
. ( ’ (49), # a µ #.
* # # (48)
& # ’ - :
(53) ∇µ T µν = ∇~ µ T µν = 0
. ’ ’ -
:
(54) ∇~µT ~µν = −∇~µT ˆµν
. " (44) (49) (52) T ~ µν (54)
! #:
(55)
j
µ
(55) #
& .
1 # , #
# . 1 ’ - # ! #,
~ = µu µ u ν =πµ u ν ,
# & # & , T µ ν
# µ – #, u µ – #
# #. # (55) # ’ #
" & (50) #:
(56)
j
µ
+ # # # , # #
# ’- . $ ’ πµ =µu µ = m δ(x − x 0 )u µ j µ =ρu µ = q δ(x − x 0 )u µ , # m q – # . $
(56) " , u
β
∇~
β
u
ν
= du
ν
d
τ+ Γα
ν
β
u
α
u
β
, :
du ν
(57) ![]()
+Γα
νβ
u
αu
β=
q f u
β
d τ mc
| ( # # . , # , (57) & # . $ # # 2 , & & # &. 1 , # ! # ( ) # |
|
| # # , # # .
6. *++%!
|
, |
| . ! & ! |
|
| # & # &. $ |
’ |
| # # # |
|
| ’ . |
(48) |
| # (55) (57) # |
, |
| & |
& |
| # |
. , |
| & ’ |
(49), |
| ’ - (43). |
,# , # |
| R 0 ’ , |
(49), # |
| . (49) |
& |
| & |
’ |
| . 1 , ’ # #, . |
# (49) # |
| $ - |
# # |
| ( g 00 = −1, g 11 = g 22 = g 33 =1) ’ (58) ∂2 a µ −3R 0 a µ = 0 |
(49) #: |
| # ∂2 =∆− − 2 ∂t 2 ( ’0 ). ( |
# # |
| # - |
, # & |
# # .
(58) # !, & # & . $
# & # & ’ ! # #:
(59) a µ = a 0 µ sin(kx −ωt )
# x – # # # & . *
’ ω k !:
(60) ω2 = 2 (k 2 +3R 0 )
# c – # # &
#. . ! (60) ’ & ! # #,
, # ’ ’ ,
# # :
(61)
v
=ω
k
= c
1+ 3
k
R
2
0
> c
(62) v = d dk ω = c 1− 3R 0 ωc 2 2 < c
1 , ’ # , & (58), ’ # # ! # c (62). % # (61) (62)
( # ). &
# c . , c
# & , ’ ! # .
$ - ! (58)
#. . (58) ’
’ & # & # :
(64) ϕ =
q
e
−αr
r
# ϕ= a
0
(’ ), q
– ’ #, α= 3R
0
= m
γ
c
/ , r
– # # #. - α
(64) « » ’ .
. , &
’ (58) , ,
! ’ & , m γ :
3R 0
(63) m
γ
=
c
* ’ # # (62). .
(63)
. (63) ’ .
* ! (37) , &
’ :
(64) 3R 0 ~10−55 −2
(65) m γ ~ 10−65
* # # #
’ . . ’
# # # # :
(66) m γ < 3⋅10−60
1 (65) # ’ . ( ,
# ’ , # " # # ’ , # ’ .
7. ,#%-(
. &
’ , ’ ’ & # . *
#&#,
# ’ . $ - -% ( ). * ’ -
.
. # #
, ’ – ( ),
# & -
. / # ’ # & & ’
. ( #
, " ’ –
# - . * ’ #
# &
’ .
$ & & & (
) # & & # # &
# #, # #.
, # ’
, #"
. 3 ’ &
# , ( ’ - ). ) &
’ # , "
’ # ’ - ’ . $ & &
. * , # " & &
’ , # !
2 . $ &, # , , ( ! ( ).
. ’ , " ’ ,
. * ’
, . * # &#
’ .
$ , #
, # & &
& ! .
_____________________
"
1. 0 - -% :
∆αµν = Γµαν + K α⋅µν
K αµν = −K µαν
2. ." % :
![]()
σ
=∂µ
g
, # g
= det g
µ
ν
Γµσ
2g
3. $ # :
Ωαµν = ∆αµν − ∆ανµ = K αµν − K ανµ
K
αµν =
1 (Ωαµν − Ωµαν − Ωναµ)
2
4. :
δu µ = −∆µαβu αdx β, δu µ = ∆αµβu αdx β
5. % # :
∇µu ν = ∂µu ν + ∆νσµu σ, ∇~µu ν = ∂µu ν + Γσνµu σ
∇µu ν = ∂µu ν − ∆σνµu σ, ∇~µu ν = ∂µu ν − Γνσµu σ
6. % # # ∆α µ ν = Γµ α ν + iA α ⋅ µν:
A α⋅µα = A α⋅(µν) = 0, ∆αµα = Γµαα , ∆α(µν) = Γµαν
∇µu µ = ∂µu µ+ ∆µσµu σ = ∂µu µ+ Γσµµu σ
∇µ T (µν) = ∂µ T (µν) +∆µσµ T (σν) + ∆ν( σµ ) T (µσ) = ∂µ T µν + Γσ µµ T (σν) + Γσ νµ T (µσ)
7. 1 - :
(∇µ∇ν −∇ν∇µ)u λ = R λ⋅σµνu σ + Ωσ⋅µν∇σu λ
R α⋅βµν = ∂µ∆αβν − ∂ν∆αβµ+ ∆ατµ∆τβν − ∆ατν∆τβµ
Ωα ⋅ µν = ∆α µ ν − ∆α ν µ
8. - - :
R
![]()
+∇~ α −∇~νK α⋅βµ+ K α⋅τµK τ⋅βν− K α⋅τνK τ⋅βµ
µK ⋅βν
9. 1 2 3 :
εαβγλ
= g
[αβγλ], εαβγλ
=− 1
[αβγλ]
![]()
+1, αβγλ - " 0123
[αβγλ ]= −1, αβγλ - " 0123
0, αβγλ #
10. * ’- :
δα⋅β⋅γ⋅ λ⋅µνστ ≡ −εαβγλεµνστ δα⋅β⋅γ⋅µνσ ≡ −εαβγτεµνστ
!"#!&"#
1. Einstein A., The Meaning of Relativity, Princeton Univ. Press, Princeton, N.Y, 1950
(* #: (!& ! )., . , 2, ., 1955).
2. ). (!& ! , . & #, 1. 1-2, #- «) », ., 1966.
3. E. Schrodinger, Space-Time Structure, Cambridge University Press, 1960 (* #:
(. 6#, * - , , )7 ,
2000).
4. * *. "., * & +. ,., 1 , #- «) », ., 1973.
5. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, Freeman, San Francisco,
1973 (* #: -. , , . . , " . / , / , #- « », .,
1977).
6. 0. ). " $ , . 1. % , ). .. 2 , . : #
, #- «) », ., 1986.
7. E. Cartan, Lecons sur la Geometrie des Espaces de Riemann, Gauthier-Villars, Paris, 1928 and 1946 (* #: % (., -
, #- /, ., 1960).
8. +. Cartan, On Manifolds with an Affine Connection and the Theory of General Relativity, translated by A. Magnon and A. Ashtekar (Bibliopolis, Naples, 1986).
9. %. %. 1 , ) # -
, #- «+# -..», 2002 .
10. 3. . - $ , 0 & # , 7),
1 119. . 3, 1976.
11. Alberto Saa, Einstein-Cartan theory of gravity revisited, gr-qc/9309027 (1993).
12. Hong-jun Xie and Takeshi Shirafuji, Dynamical torsion and torsion potential, gr-qc/9603006 (1996).
13. V.C. de Andrade and J.G. Pereira, Torsion and the Electromagnetic Field, gr-qc/9708051 (1999).
14. Yuyiu Lam , Totally Asymmetric Torsion on Riemann-Cartan Manifold, gr-qc/0211009 (2002).